13.函數(shù)y=$\frac{cosx}{2-sinx}$的值域是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

分析 先將y=$\frac{cosx}{2-sinx}$化成cosx-ysinx=2y,再利用三角函數(shù)的和角公式化成:$\sqrt{1+{y}^{2}}$cos(x+θ)=2y,最后利用三角函數(shù)的有界性即可求得值域.

解答 解:∵y=$\frac{cosx}{2-sinx}$,
∴ysinx-2y=cosx,
∴cosx-ysinx=2y,
即:$\sqrt{1+{y}^{2}}$cos(x+θ)=2y,
∵-$\sqrt{1+{y}^{2}}$≤$\sqrt{1+{y}^{2}}$cos(x+θ)≤$\sqrt{1+{y}^{2}}$,
∴-$\sqrt{1+{y}^{2}}$≤2y≤$\sqrt{1+{y}^{2}}$,
解得:y∈[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].
故答案為:$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$.

點評 本題以三角函數(shù)為載體考查分式函數(shù)的值域,屬于求三角函數(shù)的最值問題,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知D點在⊙O直徑BC的延長線上,DA切⊙O于A點,DE是∠ADB的平分線,交AC于F點,交AB于E點.
(Ⅰ)求∠AEF的度數(shù);
(Ⅱ)若AB=AD,求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱錐P-ABCD的底面是直角梯形,AD∥BC,∠ADC=90°,AD=2BC,PA⊥平面ABCD.
(Ⅰ)設E為線段PA的中點,求證:BE∥平面PCD;
(Ⅱ)若PA=AD=DC,求平面PAB與平面PCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.正方體ABCD-A1B1C1D1中,異面直線B1C與DC1所成角的大小為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.袋中裝有大小和形狀相同的2個紅球和2個黃球,隨機摸出兩個球,則兩球顏色相同的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.將一個五棱錐的每個頂點染上一種顏色,并使同一條棱的兩個端點異色,如果只有4種顏色可供使用,那么不同染色方法總數(shù)為( 。
A.120B.125C.130D.135

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=2x3-3(k+1)x2+6kx+t,其中k,t為實數(shù).
(1)若函數(shù)f(x)在x=2處有極小值0,求k,t的值;
(2)已知k≥1且t=1-3k,如果存在x0∈(1,2],使得f'(x0)≤f(x0)成立,求實數(shù)t的取值范圍;
(3)記函數(shù)H(x)=[f(x)-t-2]•[$\frac{1}{6}$f'(x)-($\frac{1}{2}$k-1)x-k],若函數(shù)y=H(x)有5個不同的零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,在正方體ABCD-A′B′C′D′中,M、N分別是BB′,CD的中點,則異面直線AM與D′N所成的角是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.各項均為正數(shù)的等比數(shù)列{an}的前n項和為Sn,若$\frac{S_4}{S_2}$=4,則$\frac{S_8}{S_4}$=10.

查看答案和解析>>

同步練習冊答案