13.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,則下列五個(gè)命題:
①如果m⊥α,n∥β,α∥β,那么m⊥n;
②如果m∥α,n∥β,m⊥n,那么α∥β;
③如果m⊥α,n⊥β,m⊥n,那么α⊥β;
④如果m⊥α,n∥β,m⊥n,那么α∥β;
⑤如果m∥α,m∥β,α∩β=n,那么m∥n.
其中正確的命題有①③⑤.(填寫所有正確命題的編號)

分析 在①中,得到m⊥β,從而m⊥n;在②中,α與β平行或相交;在③中,由面面垂直的判定定理得α⊥β;在④中,α與β平行或相交;在⑤中,由線面平行的性質(zhì)定理得m∥n.

解答 解:由α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,知:
在①中,若m⊥α,α∥β,則m⊥β,
又因?yàn)閚∥β,則m⊥n,故①正確;
在②中,如果m∥α,n∥β,m⊥n,那么α與β平行或相交,故②錯(cuò)誤;
在③中,如果m⊥α,n⊥β,m⊥n,則由面面垂直的判定定理得α⊥β,故③正確;
在④中,如果m⊥α,n∥β,m⊥n,那么α與β平行或相交,故④錯(cuò)誤;
在⑤中,如果m∥α,m∥β,α∩β=n,那么由線面平行的性質(zhì)定理得m∥n,故⑤正確.
故答案為:①③⑤.

點(diǎn)評 本題命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.橢圓6x2+y2=36的長軸端點(diǎn)坐標(biāo)為( 。
A.(-1,0),(1,0)B.(0,-6),(0,6)C.(-6,0),(6,0)D.$(-\sqrt{6},0),(\sqrt{6},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn=3n2+8n,數(shù)列{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{an},{bn}的通項(xiàng)公式an,bn
(2)設(shè)cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$,且λ>$\frac{{{c_{n+1}}}}{c_n}$對任意的n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在數(shù)列{an}中,a1=2,an+1=an+lg(1+$\frac{1}{n}$),則an的值為(  )
A.2+lgnB.2+(n-1)lgnC.2+nlgnD.1+nlgn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為研究造成死亡的結(jié)核病類型與性別的關(guān)系,取得如下資料:
男 性女 性
呼吸系統(tǒng)結(jié)核3 5341 319
能造成死亡的結(jié)核病類型270252
由此你能得出什么結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若圓的一條直徑的兩個(gè)端點(diǎn)分別是(2,0)和(2,-2),則此圓的方程是( 。
A.x2+y2-4x+2y+4=0B.x2+y2-4x-2y-4=0C.x2+y2-4x+2y-4=0D.x2+y2+4x+2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=tan\frac{x}{4}•{cos^2}\frac{x}{4}-2{cos^2}({\frac{x}{4}+\frac{π}{12}})+1$.
(Ⅰ)求f(x)的定義域及最小正周期;
(Ⅱ)求f(x)在區(qū)間[-π,0]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.寫出下列不等式的解集
(1)tanx-1≤0.
(2)-1≤tanx<$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{a}^{2}}$=1與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1焦點(diǎn)相同,則a=$±\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案