如圖,在三棱錐中,,為的中點,⊥平面,垂足落在線段上.
(Ⅰ)證明:⊥;
(Ⅱ)已知,,,.求二面角的大小.
本題主要考查空間線線、線面、面面位置關(guān)系,二面角等基礎(chǔ)知識,同時考查空間想象能力和推理論證能力。滿分14分。
(Ⅰ)證明:由AB=AC,D是BC的中點,得AD⊥BC,
又PO⊥平面ABC,得PO⊥BC。
因為PO∩AD=0,所以BC⊥平面PAD
故BC⊥PA.
(Ⅱ)解:如圖,在平面PAB內(nèi)作BM⊥PA于M,連CM.
因為BC⊥PA.,得AP⊥平面BMC.
所以AP⊥CM.
故∠BMC為二面角B-AP-C的平面角。
在Rt⊿ADB中,AB2=AD2+BD2=41,得AB=
在Rt⊿POD中, PD2=PO2+OD2,
在Rt⊿PDB中, PB2=PD2+BD2,
所以PB2=PO2+OD2+BD2=36,得PB=6.
在Rt⊿POB中, PA2=AO2+OP2=25,得PA=5
又
從而所以
同理CM
因為BM2+MC2=BC2
所以=900
即二面角B-AP-C的大小為900。
科目:高中數(shù)學(xué) 來源:2013屆廣西玉林市高二下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,,為中點.
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值. (本題12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市高三上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題
如圖,在三棱錐中, 兩兩垂直且相等,過的中點作平面∥,且分別交于,交的延長線于.
(Ⅰ)求證:平面;
(Ⅱ)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011---2012學(xué)年四川省高二10月考數(shù)學(xué)試卷 題型:解答題
如圖:在三棱錐中,已知點、、分別為棱、、的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)若,,求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:黑龍江省2013屆高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
如圖,在三棱錐中,,為中點。(1)求證:平面
(2)在線段上是否存在一點,使二面角的平面角的余弦值為?若存在,確定點位置;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com