如圖,在三棱錐中,側面與側面均為等邊三角形,,中點.

 (Ⅰ)證明:平面

(Ⅱ)求二面角的余弦值.    (本題12分)

 

 

【答案】

 

證明:(Ⅰ)由題設,連結,

為等腰直角三角形,所以,且,

為等腰三角形,故,且,

從而.所以為直角三角形,.又.所以平面

(Ⅱ)解:以為坐標原點,射線分別為軸、軸的正半軸,建立如圖的空間直角坐標系.設,則

的中點  , 

.故等于二面角的平面角.,

所以二面角的余弦值為

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年廣東省中山市實驗高中高三11月階段考試文科數(shù)學試卷(解析版) 題型:解答題

如圖,在三棱錐中,平面,為側棱上一點,它的正(主)視圖和側(左)視圖如圖所示.

(1)證明:平面;

(2)在的平分線上確定一點,使得平面,并求此時的長.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇省高三開學檢測理科數(shù)學試卷(解析版) 題型:解答題

如圖,在四棱錐中,側棱底面,底面為矩形,上一點,,

(I)若的中點,求證平面;

(II)求三棱錐的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇省高三開學檢測文科數(shù)學試卷(解析版) 題型:解答題

如圖,在四棱錐中,側棱底面,底面為矩形,上一點,,

(I)若的中點,求證平面;

(II)求三棱錐的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年陜西省高三第六次適應性訓練文科數(shù)學(解析版) 題型:解答題

如圖,在三棱錐中,平面,為側棱上一點,它的正(主)視圖和側(左)視圖如圖所示.

(1)證明:平面

(2)求三棱錐的體積;

(3)在的平分線上確定一點,使得平面,并求此時的長.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年北京市朝陽區(qū)高三上學期期末理科數(shù)學卷 題型:解答題

如圖,在三棱錐中,,,側面為等邊三角形,側棱

(Ⅰ)求證:;

(Ⅱ)求證:平面平面;

(Ⅲ)求二面角的余弦值

 

查看答案和解析>>

同步練習冊答案