【題目】若關(guān)于x的方程(x﹣1)4+mx﹣m﹣2=0各個(gè)實(shí)根x1 , x2…xk(k≤4,k∈N*)所對(duì)應(yīng)的點(diǎn)(xi),(i=1,2,3…k)均在直線y=x的同側(cè),則實(shí)數(shù)m的取值范圍是( )
A.(﹣1,7)
B.(﹣∞,﹣7)U(﹣1,+∞)
C.(﹣7,1)
D.(﹣∞,1)U(7,+∞)
【答案】D
【解析】方程的根顯然x≠1,原方程等價(jià)于(x﹣1)3+m= ,
原方程的實(shí)根是曲線y=(x﹣1)3+m與曲線y=的交點(diǎn)的橫坐標(biāo).
而曲線y=(x﹣1)3+m是由曲線y=(x﹣1)3向上或向下平移|m|個(gè)單位而得到的,
若交點(diǎn)(xi,)(i=1,2,…,k)均在直線y=x的同側(cè),
因直線y=x與y=交點(diǎn)為:(﹣1,﹣1),(2,2);
所以結(jié)合圖象可得,
由(2﹣1)3+m=2,解得:m=1,由(﹣1﹣1)3+m=﹣1,解得:m=7
∴m<1或m>7,
故選:D.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的零點(diǎn)與方程根的關(guān)系,需要了解二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的值;
(2)求在上的單調(diào)區(qū)間;
(3)求在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在等腰梯形中,,,,,=60°,沿,折成三棱柱.
(1)若,分別為,的中點(diǎn),求證:∥平面;
(2)若,求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),k∈R.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)k>0時(shí),若函數(shù)f(x)在區(qū)間(1,2)內(nèi)單調(diào)遞減,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
滿足:或1(k=1,2,…,n-1).
對(duì)任意i,j,都存在s,t,使得,其中i,j,s,t∈{1,2,…,n}且兩兩不相等.
(I)若m=2,寫出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);
①1,1,1,2,2,2; ②1,1,1,1,2,2,2,2; ③1,1,1,1,1,2,2,2,2
(II)記.若m=3,求S的最小值;
(III)若m=2018,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了提高學(xué)生的身體素質(zhì),決定組建學(xué)校足球隊(duì),學(xué)校為了解學(xué)生的身體素質(zhì),對(duì)他們的體重進(jìn)行了測量,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(1)求該校報(bào)名學(xué)生的總?cè)藬?shù);
(2)從報(bào)名的學(xué)生中任選3人,設(shè)X表示體重超過60kg的學(xué)生人數(shù),求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(a、b∈R,a、b為常數(shù)),且y=f(x)在x=1處切線方程為y=x﹣1.
(1)求a,b的值;
(2)設(shè)h(x)= , k(x)=2h′(x)x2 , 求證:當(dāng)x>0時(shí),k(x)<+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種樹苗栽種時(shí)高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足 f(n)=,其中,a,b為常數(shù),n∈N,f(0)=A.已知栽種3年后該樹木的高度為栽種時(shí)高度的3倍.
(1)栽種多少年后,該樹木的高度是栽種時(shí)高度的8倍;
(2)該樹木在栽種后哪一年的增長高度最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com