17.某班的全體學(xué)生(共50人)參加數(shù)學(xué)測(cè)試(百分制),成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為:[20,40),[40,60),[60,80),[80,100],依此表可以估計(jì)這次測(cè)試成績的中位數(shù)為70分.
(1)求表中a,b的值;
(2)請(qǐng)估計(jì)該班本次數(shù)學(xué)測(cè)試的平均分.

分析 (1)根據(jù)頻率分布直方圖,和頻率=$\frac{頻數(shù)}{總數(shù)}$,即可求出,
(2)根據(jù)平均數(shù)定義即可求得.

解答 解:(1)由中位數(shù)為70可得0.005×20+0.01×20+a×10=0.5,
解得a=0.02,
又20(0.005+0.01+0.02+b)=1,解得b=0.015,
(2)該班本次數(shù)學(xué)測(cè)試的平均成績估計(jì)值為30×0.1+50×0.2+70×0.4+90×0.3=68分.

點(diǎn)評(píng) 本題題考查了學(xué)生的識(shí)圖及計(jì)算能力,頻率分布直方圖的性質(zhì),及平均數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x、y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,則z=x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖; 
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表
非體育迷體育迷合計(jì)
合計(jì)
(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3-3ax-1(a∈R)
(1)試討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)=0在x∈[0,1]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示的程序框圖中,若輸入x的值為10,則輸出的x與k的值的和為( 。
A.179B.173C.90D.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合M={x|x=sin$\frac{nπ}{3}$,n∈Z},N={x|x=cos$\frac{nπ}{2}$,n∈N},M∩N等于( 。
A.{-1,0,1}B.{0,1}C.{0}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=x-$\frac{2}{x}$-3lnx+k在其定義域上有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(-∞,1-3ln2)B.(1,3ln2-1)C.(1-3ln2,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(α)=$\frac{{cos({3π+α})cos({\frac{3π}{2}+α})sin({-α})}}{{tan({-π-α})sin({3π-α})cos({-π-α})}}$.
(1)化簡f(α);
(2)已知角α為銳角,$f({α+\frac{π}{6}})=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{m}$=(4sinx,1),$\overrightarrow{n}$=(cos(x+$\frac{π}{6}$),1)
(Ⅰ)設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值;
(Ⅱ)若f($\frac{A}{2}$)=$\frac{6}{5}$,$\frac{π}{3}$<A<$\frac{5}{6}$π,求cos2A的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案