分析 (1)由正四棱柱的高O1O是正四棱錐的高PO1的4倍,可得PO1=2m時(shí),O1O=8m,進(jìn)而可得倉庫的容積;
(2)設(shè)PO1=xm,則O1O=4xm,A1O1=$\sqrt{36-{x}^{2}}$m,A1B1=$\sqrt{2}$•$\sqrt{36-{x}^{2}}$m,代入體積公式,求出容積的表達(dá)式,利用導(dǎo)數(shù)法,可得最大值.
解答 解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱錐的高PO1的4倍.
∴O1O=8m,
∴倉庫的容積V=$\frac{1}{3}$×62×2+62×8=312m3,
(2)若正四棱錐的側(cè)棱長為6m,
設(shè)PO1=xm,
則O1O=4xm,A1O1=$\sqrt{36-{x}^{2}}$m,A1B1=$\sqrt{2}$•$\sqrt{36-{x}^{2}}$m,
則倉庫的容積V=$\frac{1}{3}$×($\sqrt{2}$•$\sqrt{36-{x}^{2}}$)2•x+($\sqrt{2}$•$\sqrt{36-{x}^{2}}$)2•4x=$-\frac{26}{3}$x3+312x,(0<x<6),
∴V′=-26x2+312,(0<x<6),
當(dāng)0<x<2$\sqrt{3}$時(shí),V′>0,V(x)單調(diào)遞增;
當(dāng)2$\sqrt{3}$<x<6時(shí),V′<0,V(x)單調(diào)遞減;
故當(dāng)x=2$\sqrt{3}$時(shí),V(x)取最大值;
即當(dāng)PO1=2$\sqrt{3}$m時(shí),倉庫的容積最大.
點(diǎn)評 本題考查的知識點(diǎn)是棱錐和棱柱的體積,導(dǎo)數(shù)法求函數(shù)的最大值,難度中檔.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ac<bc | B. | abc<bac | C. | alogbc<blogac | D. | logac<logbc |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
一年內(nèi)出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com