12.以拋物線C的頂點為圓心的圓交C于A、B兩點,交C的準(zhǔn)線于D、E兩點.已知|AB|=4$\sqrt{2}$,|DE|=2$\sqrt{5}$,則C的焦點到準(zhǔn)線的距離為(  )
A.2B.4C.6D.8

分析 畫出圖形,設(shè)出拋物線方程,利用勾股定理以及圓的半徑列出方程求解即可.

解答 解:設(shè)拋物線為y2=2px,如圖:|AB|=4$\sqrt{2}$,|AM|=2$\sqrt{2}$,
|DE|=2$\sqrt{5}$,|DN|=$\sqrt{5}$,|ON|=$\frac{p}{2}$,
xA=$\frac{(2\sqrt{2})^{2}}{2p}$=$\frac{4}{p}$,
|OD|=|OA|,
$\frac{16}{{p}^{2}}+8$=$\frac{{p}^{2}}{4}$+5,
解得:p=4.
C的焦點到準(zhǔn)線的距離為:4.
故選:B.

點評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,拋物線與圓的方程的應(yīng)用,考查計算能力.轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知z=(m+3)+(m-1)i在復(fù)平面內(nèi)對應(yīng)的點在第四象限,則實數(shù)m的取值范圍是( 。
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出以下四個函數(shù)的大致圖象:則函數(shù)f(x)=xlnx,g(x)=$\frac{lnx}{x}$,h(x)=xex,t(x)=$\frac{e^x}{x}$對應(yīng)的圖象序號順序正確的是(  )
A.②④③①B.④②③①C.③①②④D.④①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,在平面直角坐標(biāo)系xOy中,F(xiàn)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點,直線y=$\frac{2}$與橢圓交于B,C兩點,且∠BFC=90°,則該橢圓的離心率是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P-A1B1C1D1,下部的形狀是正四棱柱ABCD-A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6m,PO1=2m,則倉庫的容積是多少?
(2)若正四棱錐的側(cè)棱長為6m,則當(dāng)PO1為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E與二面角C-BE-F都是60°.
(Ⅰ)證明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)?shù)列1$\frac{1}{2}$,2$\frac{1}{3}$,3$\frac{1}{4}$,4$\frac{1}{5}$,…的一個通項公式為$\frac{{n}^{2}+n+1}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-$\frac{1}{2}$|+|x+$\frac{1}{2}$|,M為不等式f(x)<2的解集.
(Ⅰ)求M;
(Ⅱ)證明:當(dāng)a,b∈M時,|a+b|<|1+ab|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1過點A(2,0),B(0,1)兩點.
(1)求橢圓C的方程及離心率;
(2)設(shè)P為第三象限內(nèi)一點且在橢圓C上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

同步練習(xí)冊答案