12.若a>b>1,0<c<1,則( 。
A.ac<bcB.abc<bacC.alogbc<blogacD.logac<logbc

分析 根據(jù)已知中a>b>1,0<c<1,結(jié)合對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性,分析各個(gè)結(jié)論的真假,可得答案.

解答 解:∵a>b>1,0<c<1,
∴函數(shù)f(x)=xc在(0,+∞)上為增函數(shù),故ac>bc,故A錯(cuò)誤;
函數(shù)f(x)=xc-1在(0,+∞)上為減函數(shù),故ac-1<bc-1,故bac<abc,即abc>bac;故B錯(cuò)誤; 
logac<0,且logbc<0,logab<1,即$\frac{{log}_{c}b}{{log}_{c}a}$=$\frac{{log}_{a}c}{{log}_c}$<1,即logac>logbc.故D錯(cuò)誤;
0<-logac<-logbc,故-blogac<-alogbc,即blogac>alogbc,即alogbc<blogac,故C正確;
故選:C

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是不等式的比較大小,熟練掌握對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在平面直角坐標(biāo)系中,以x軸的非負(fù)半軸為角的始邊,如果角α,β的終邊分別與單位圓交于點(diǎn)($\frac{12}{13}$,$\frac{5}{13}$)和(-$\frac{3}{5}$,$\frac{4}{5}$),那么cosαsinβ等于( 。
A.-$\frac{36}{65}$B.-$\frac{3}{13}$C.$\frac{4}{13}$D.$\frac{48}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距F1F2的長(zhǎng)為2,經(jīng)過(guò)第二象限內(nèi)一點(diǎn)P(m,n)的直線$\frac{mx}{{a}^{2}}$+$\frac{ny}{^{2}}$=1與圓x2+y2=a2交于A,B兩點(diǎn),且OA=$\sqrt{2}$.
(1)求PF1+PF2的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{8}{3}$,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知復(fù)數(shù)z滿足z$\overline{z}$+2i$\overline{z}$=3+ai(a∈R),且z對(duì)應(yīng)的點(diǎn)在第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知等差數(shù)列{an}前9項(xiàng)的和為27,a10=8,則a100=( 。
A.100B.99C.98D.97

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知z=(m+3)+(m-1)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,則實(shí)數(shù)m的取值范圍是( 。
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,其定義域和值域分別與函數(shù)y=10lgx的定義域和值域相同的是(  )
A.y=xB.y=lgxC.y=2xD.y=$\frac{1}{\sqrt{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.定義在R上的偶函數(shù)f(x)在(-∞,0]上遞減,f(-1)=0,則滿足f(log2x)>0的x的取值范圍是$(0,\frac{1}{2})∪(2,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),它由上下兩部分組成,上部的形狀是正四棱錐P-A1B1C1D1,下部的形狀是正四棱柱ABCD-A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6m,PO1=2m,則倉(cāng)庫(kù)的容積是多少?
(2)若正四棱錐的側(cè)棱長(zhǎng)為6m,則當(dāng)PO1為多少時(shí),倉(cāng)庫(kù)的容積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案