分析 (1)由f(0)=0可得b值,再由f(-1)+f(1)=0可得b值;
(2)分類常數可得可得f(x)=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$,由2x>0和不等式的性質可得函數的值域.
解答 解:(1)由a>0和奇函數的性質可得f(0)=0,
∴$\frac{-1+b}{2+a}$=0,解得b=1,∴f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+a}$,
再由f(-1)+f(1)=0可得$\frac{\frac{1}{2}}{1+a}$+$\frac{-1}{4+a}$=0,
解得a=2;
(2)由(1)可得f(x)=$\frac{-{2}^{x}+1}{{2}^{x+1}+2}$=$\frac{-({2}^{x}-1)}{2({2}^{x}+1)}$
=$\frac{-({2}^{x}+1)+2}{2({2}^{x}+1)}$=-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$,
∵2x>0,∴2x+1>1,∴0<$\frac{1}{{2}^{x}+1}$<1,
∴-$\frac{1}{2}$<-$\frac{1}{2}$+$\frac{1}{{2}^{x}+1}$<$\frac{1}{2}$,
∴函數的值域為(-$\frac{1}{2}$,$\frac{1}{2}$)
點評 本題考查函數的奇偶性和函數的值域,屬基礎題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4π}{3}$ | B. | 16π | C. | $\frac{32π}{3}$ | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $-\frac{1}{2}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4m | B. | 4-m | C. | 0 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com