6.已知$0<α<\frac{π}{2}$,$-\frac{π}{2}<β<0$,$cos({α-β})=\frac{3}{5}$,且$tanα=\frac{3}{4}$,求$tan({β+\frac{π}{4}})$的值?

分析 根據(jù)α、β的取值范圍計(jì)算tan(α-β)的值,再求出tanβ的值,即可求出$tan({β+\frac{π}{4}})$的值.

解答 解:$0<α<\frac{π}{2}$,$-\frac{π}{2}<β<0$,
∴0<-β<$\frac{π}{2}$,
∴0<α-β<π;
又$cos({α-β})=\frac{3}{5}$,
∴sin(α-β)=$\frac{4}{5}$;
∴tan(α-β)=$\frac{sin(α-β)}{cos(α-β)}$=$\frac{4}{3}$;
又$tanα=\frac{3}{4}$,
∴tanβ=tan[α-(α-β)]=$\frac{tanα-tan(α-β)}{1+tanαtan(α-β)}$=$\frac{\frac{3}{4}-\frac{4}{3}}{1+\frac{3}{4}×\frac{4}{3}}$=-$\frac{7}{24}$,
∴$tan({β+\frac{π}{4}})$=$\frac{tanβ+tan\frac{π}{4}}{1-tanβtan\frac{π}{4}}$=$\frac{-\frac{7}{24}+1}{1-(-\frac{7}{24})×1}$=$\frac{17}{31}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)值的計(jì)算問題,也考查了三角恒等變換問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦分別為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,過點(diǎn)F1且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為2,直線l:y=kx+m與橢圓交于不同的A、B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q滿足:$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OQ}$(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若滿足條件a=4,A=30°的△ABC有且只有兩個(gè),則邊c所有可能的值域構(gòu)成的集合是(4,8)(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=3cos(x+100)+5sin(x+40°)的最大值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知tan(π-x)=3,則sin2x=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知θ是第二象限角,且${sin^4}θ+{cos^4}θ=\frac{5}{9}$,則sin2θ=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將函數(shù)y=sin(x+α)+sin(x+β)化為y=Asin(ωx+φ)(A>0,ω>0)的形式后,振幅為1,則α-β=2kπ±$\frac{2π}{3}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.計(jì)算${({\frac{9}{4}})^{\frac{1}{2}}}×{({\frac{27}{8}})^{-\frac{1}{3}}}-{(lg2)^2}-{(lg5)^2}-2lg2\;•\;lg5$的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xoy,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=acost+\sqrt{3}}\\{y=asint}\end{array}}\right.$(t為參數(shù),a>0).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線${C_2}:{ρ^2}=2ρsinθ+6$.
(1)說明C1是哪種曲線,并將C1的方程化為極坐標(biāo)方程;
(2)已知C1與C2的交于A,B兩點(diǎn),且AB過極點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案