【題目】已知集合A={x|y=lg(x-)},B={x|-cx<0,c>0},若AB,則實數(shù)c的取值范圍是(  )

A.(0,1]B.[1,+∞)

C.(0,1)D.(1,+∞)

【答案】B

【解析】

A集合用對數(shù)的真數(shù)的定義即可求出范圍,B集合化簡后含有參數(shù),所以,畫出數(shù)軸,用數(shù)軸表示AB,即可求出c的取值范圍.

解法1:A={x|y=lg(x-)}={x|x->0}={x|0<x<1},B={x|-cx<0,c>0}={x|0<x<c},因為AB,畫出數(shù)軸,如圖所示,得c≥1.

解法2:因為A={x|y=lg(x-)}={x|x->0}={x|0<x<1},取c=1,則B={x|0<x<1},所以AB成立,故可排除C,D;取c=2,則B={x|0<x<2} ,所以AB成立,故可排除A,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】13個人坐在有八個座位的一排椅子上,若每個人的左右兩邊都要有空位,則不同坐法的種數(shù)為多少?

2)某高,F(xiàn)有10個保送上大學(xué)的名額分配給7所高中學(xué)校,若每所高中學(xué)校至少有1個名額,則名額分配的方法共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,證明:

2)若只有一個極值點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近來國內(nèi)一些互聯(lián)網(wǎng)公司為了贏得更大的利潤、提升員工的奮斗姿態(tài),要求員工實行“996”工作制,即工作日早9點上班,晚上21點下班,中午和傍晚最多休息1小時,總計工作10小時以上,并且一周工作6天的工作制度,工作期間還不能請假,也沒有任何補貼和加班費.消息一出,社交媒體一片嘩然,有的人認(rèn)為這是違反《勞動法》的一種對員工的壓榨行為,有的人認(rèn)為只有付出超越別人的努力和時間,才能夠?qū)崿F(xiàn)想要的成功,這是提升員工價值的一種有效方式.對此,國內(nèi)某大型企業(yè)集團管理者認(rèn)為應(yīng)當(dāng)在公司內(nèi)部實行“996”工作制,但應(yīng)該給予一定的加班補貼(單位:百元),對于每月的補貼數(shù)額集團人力資源管理部門隨機抽取了集團內(nèi)部的1000名員工進行了補貼數(shù)額(單位:百元)期望值的網(wǎng)上問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

1)求所得樣本的中位數(shù)(精確到百元);

2)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為員工的加班補貼服從正態(tài)分布,若該集團共有員工40000人,試估計有多少員工期待加班補貼在8100元以上;

3)已知樣本數(shù)據(jù)中期望補貼數(shù)額在范圍內(nèi)的8名員工中有5名男性,3名女性,現(xiàn)選其中3名員工進行消費調(diào)查,記選出的女職員人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論

ACBD

ACD是等邊三角形;

AB與平面BCD成60°的角;

AB與CD所成的角是60°.

其中正確結(jié)論的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M,N分別為正方體ABCDA1B1C1D1的棱AA1BB1的中點,以正方體的六個面的中心為頂點構(gòu)成一個八面體,若平面D1MNC1將該八面體分割成上、下兩部分的體積分別為V1、V2,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M在橢圓10b)上,且位于第一象限,F1,F2為橢圓的兩個焦點,過F1F2,M的圓與y軸交于點P,QPQ的上方),|OP||OQ|1

(Ⅰ)求b的值;

(Ⅱ)直線PM與直線x2交于點N,試問,在x軸上是否存在定點T,使得為定值?若存在,求出點T的坐標(biāo)與該定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,所在平面互相垂直,且,,分別為,的中點.

(1)求證:

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

同步練習(xí)冊答案