【題目】甲、乙、丙三人按下面的規(guī)則進(jìn)行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與
輪空者進(jìn)行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進(jìn)行到其中一人連勝兩局或打滿6局時停止.設(shè)在每局中參賽者勝負(fù)的概率均為,且各局勝負(fù)相互獨立,求:
(1)打滿3局比賽還未停止的概率;
(2)比賽停止時已打局?jǐn)?shù)ξ的分布列與期望E(ξ).
【答案】見解析
【解析】令A(yù)k,Bk,Ck分別表示甲、乙、丙在第k局中獲勝.
(1)由獨立事件同時發(fā)生與互斥事件至少有一個發(fā)生的概率公式知,打滿3局比賽還未停止的概率為P(A1C2B3)+P(B1C2A3)=+=.
(2)ξ的所有可能值有2,3,4,5,6,且
P(ξ=2)=P(A1A2)+P(B1B2)=+=,
P(ξ=3)=P(A1C2C3)+P(B1C2C3)=+=,
P(ξ=4)=P(A1C2B3B4)+P(B1C2A3A4)=+=,
P(ξ=5)=P(A1C2B3A4A5)+P(B1C2A3B4B5)=+=,
P(ξ=6)=P(A1C2B3A4C5)+P(B1C2A3B4C5)=+=.
故ξ的分布列為:
ξ | 2 | 3 | 4 | 5 | 6 |
P |
從而E(ξ)=2×+3×+4×+5×+6×=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府鑒于某種日常食品價格增長過快,欲將這種食品價格控制在適當(dāng)范圍內(nèi),決定對這種食品生產(chǎn)廠家提供政府補(bǔ)貼,設(shè)這種食品的市場價格為x元/千克,政府補(bǔ)貼為t元/千克,根據(jù)市場調(diào)查,當(dāng)16≤x≤24時,這種食品市場日供應(yīng)量p萬千克與市場日需求量q萬千克近似地滿足關(guān)系:p=2(x+4t-14)(x≥16,t≥0),q=24+8ln (16≤x≤24).當(dāng)p=q時的市場價格稱為市場平衡價格.
(1)將政府補(bǔ)貼表示為市場平衡價格的函數(shù),并求出函數(shù)的值域.
(2)為使市場平衡價格不高于每千克20元,政府補(bǔ)貼至少為每千克多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,為正三角形,,,點,分別為線段、的中點,、分別為線段、上一點,且,.
(1)確定點的位置,使得平面;
(2)點為線段上一點,且,若平面將四棱錐分成體積相等的兩部分,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);
(2)設(shè),若不等式對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地
區(qū)調(diào)查了500位老年人,結(jié)果如下:
男 | 女 | |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人需要志愿者提供幫助與性別有
關(guān)?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民用水原價為2.25元/立方米,從2010年1月1日起實行階梯式計價:
級數(shù) | 計算水費的用水量/立方米 | 單價/(元/立方米) |
1 | 不超過20立方米 | 1.8 |
2 | 超過20立方米至30立方米 | 2.4 |
3 | 超過30立方米 | p |
其中p是用水總量的一次函數(shù),已知用水總量為40立方米時p=3.0元/立方米,用水總量為50立方米時p=3.5元/立方米.
(1)寫出水價調(diào)整后居民每月水費額與用水量的函數(shù)關(guān)系式.每月用水量在什么范圍內(nèi),水價調(diào)整后居民同等用水的水費比調(diào)整前增加?
(2)用一個流程圖描述水價調(diào)整后計算水費的主要步驟.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是正比例函數(shù),函數(shù)g(x)是反比例函數(shù),且f(1)=1,g(1)=2.
(1)求函數(shù)f(x)和g(x);
(2)判斷函數(shù)f(x)+g(x)的奇偶性;
(3)求函數(shù)f(x)+g(x)在(0,]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng)時,函數(shù)的圖象與軸交于兩點且,又是的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明:<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com