5.下列結(jié)論中,正確的是( 。
A.2014cm長的有向線段不可能表示單位向量
B.若0是直線l上的一點(diǎn),單位長度已選定,則l上有且只有兩個(gè)點(diǎn)A,B,使得$\overrightarrow{OA}$,$\overrightarrow{OB}$是單位向量
C.方向?yàn)楸逼?0°的向量與南偏東50°的向量不可能是平行向量
D.一人從A點(diǎn)向東走500米到達(dá)B點(diǎn),則$\overrightarrow{AB}$不能表示這個(gè)人從A點(diǎn)到B點(diǎn)的位移

分析 根據(jù)向量的基本概念,逐一分析四個(gè)答案的真假,可得結(jié)論.

解答 解:2014cm長的有向線段可以表示單位向量,故A錯(cuò)誤;
若0是直線l上的一點(diǎn),單位長度已選定,
則l上有且只有兩個(gè)、分別位于O點(diǎn)兩側(cè)、且距離O點(diǎn)距離為單位長度的點(diǎn)A,B,使得$\overrightarrow{OA}$,$\overrightarrow{OB}$是單位向量,故正確;
如圖所示:

方向?yàn)楸逼?0°的向量與南偏東50°的向量,方向相反是平行向量,故C錯(cuò)誤;
一人從A點(diǎn)向東走500米到達(dá)B點(diǎn),則向量$\overrightarrow{AB}$表示這個(gè)人從A點(diǎn)到B點(diǎn)的位移,故D錯(cuò)誤;
故選:B

點(diǎn)評 本題以命題的真假判斷為載體,考查了平面向量的基本概念,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式$\frac{x+1}{2-x}$≤0的解集為( 。
A.[-2,1]B.[-1,2]C.[-1,2)D.(-∞,-1]∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=lg(1-x)的值域?yàn)椋?∞,1),則函數(shù)f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.[-9,1)B.(-9,1)C.[0,+∞)D.[-9,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,拋物線y=-x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線y=x交拋物線y=-x2+bx+c對稱軸右側(cè)的拋物線于點(diǎn)P,連接PA、PC,設(shè)△AOP的面積為S1,△COP的面積為S2
(1)①若A、C兩點(diǎn)坐標(biāo)分別為(3,0),(0,3),求拋物線y=-x2+bx+c的解析式;
②試判斷S1與S2之間的關(guān)系,并說明理由;
(2)將(1)中的拋物線沿x軸正方向平移,在平移過程中,是否存在點(diǎn)P,使S1=2S2,若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PA上的一點(diǎn).
(1)求證:平面PAC⊥平面PCD;
(2)當(dāng)點(diǎn)E在什么位置時(shí),BE∥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=cos($\frac{9π}{2}$+x)+sin2x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列四個(gè)條件:
①$\overrightarrow{a}$=$\overrightarrow$;②|$\overrightarrow{a}$|=|$\overrightarrow$|:③$\overrightarrow{a}$與$\overrightarrow$方向相反;④|$\overrightarrow{a}$|=0或|$\overrightarrow$|=0,其中能使$\overrightarrow{a}$∥$\overrightarrow$成立的條件是①③④.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求證不等式:$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{n}$<lnn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=-x2+3x-1的單調(diào)性是在區(qū)間[$\frac{3}{2}$,+∞)上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊答案