【題目】已知直線與圓交于,兩點,過點的直線與圓交于,兩點.

若直線垂直平分弦,求實數(shù)的值;

已知點,在直線上(為圓心),存在定點(異于點),滿足:對于圓上任一點,都有為同一常數(shù),試求所有滿足條件的點的坐標及該常數(shù).

【答案】;在直線上存在定點使得為常數(shù).

【解析】

化簡圓的方程為標準方程,求出圓的半徑,轉(zhuǎn)化求解實數(shù)的值;

設直線上的點,取直線與圓的交點,則,

取直線與圓的交點,則,然后求解存在這樣的定點,進而求證結(jié)論.

解:依題意,圓C方程變形為,圓心,半徑

又直線l的方程即為

因為垂直平分弦,圓心必在直線

過點,斜率

設直線上的點取直線與圓的交點,則

取直線與圓的交點,則.

,解得(舍去,與重合),此時

若存在這樣的定點滿足題意,則必為

下證:點滿足題意.設圓上任意一點,則

綜上可知,在直線上存在定點使得為常數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當時,解不等式;

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小正周期為,圖象過點.

1)求、的值和的單調(diào)增區(qū)間;

2)將函數(shù)的圖象向右平移個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有兩個不同零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了豐富學生的課外文化生活,某中學積極探索開展課外文體活動的新途徑及新形式,取得了良好的效果.為了調(diào)查學生的學習積極性與參加文體活動是否有關(guān),學校對200名學生做了問卷調(diào)查,列聯(lián)表如下:

參加文體活動

不參加文體活動

合計

學習積極性高

80

學習積極性不高

60

合計

200

已知在全部200人中隨機抽取1人,抽到學習積極性不高的學生的概率為.

1)請將上面的列聯(lián)表補充完整;

2)是否有99.9%的把握認為學習積極性高與參加文體活動有關(guān)?請說明你的理由;

3)若從不參加文體活動的同學中按照分層抽樣的方法選取5人,再從所選出的5人中隨機選取2人,求至少有1人學習積極性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線的一個焦點恰好與拋物線的焦點重合,且兩曲線的一個交點為,若,則雙曲線的方程為( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,點在橢圓上,線段軸的交點滿足.

(1)求橢圓的標準方程;

(2)過點作不與軸重合的直線,設與圓相交于兩點,與橢圓相交于兩點,當時,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對平面區(qū)域,用表示屬于的所有整點(即平面上坐標都是整數(shù)的點)的個數(shù).表示由曲線和兩直線所圍成的區(qū)域(包括邊界);表示由曲線和兩直線所圍成的區(qū)域(包括邊界).______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高一年級的一次月考成績中隨機抽取了 50名學生的成績(滿分100分,且抽取的學生成績都在內(nèi)),按成績分為,,,五組,得到如圖所示的頻率分布直方圖.

1)用分層抽樣的方法從月考成績在內(nèi)的學生中抽取6人,求分別抽取月考成績在內(nèi)的學生多少人;

2)在(1)的前提下,從這6名學生中隨機抽取2名學生進行調(diào)查,求月考成績在內(nèi)至少有1名學生被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在一次射擊預選賽中,甲、乙兩人各射擊次,兩人成績的條形統(tǒng)計圖如圖所示,則下列四個選項中判斷不正確的是( )

A. 甲的成績的平均數(shù)小于乙的成績的平均數(shù)

B. 甲的成績的中位數(shù)小于乙的成績的中位數(shù)

C. 甲的成績的方差大于乙的成績的方差

D. 甲的成績的極差小于乙的成績的極差

查看答案和解析>>

同步練習冊答案