【題目】雙曲線的一個焦點恰好與拋物線的焦點重合,且兩曲線的一個交點為,若,則雙曲線的方程為( 。

A. B.

C. D.

【答案】D

【解析】

求出拋物線的焦點坐標,可得雙曲線的焦距,得到關系式,利用拋物線的焦半徑公式求出的坐標,把點代入雙曲線方程,可求得的值,從而可求出雙曲線的標準方程.

∵拋物線y2=8x的焦點F(2,0),

∴由題意知雙曲線1(a>0,b>0)的一個焦點為F(2,0),

a2+b2=4,

P是拋物線與雙曲線的一個交點,|PF|=5,

P點橫坐標滿足,代入拋物線y2=8xP(3,±2),

P(3,±2)代入雙曲線1(a>0,b>0)得,

整理得a4﹣37a2+36=0,

解得a2=1,或a2=36(舍)

b2=3,

所求雙曲線方程為:x21.

故選D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,已知,,,平面平面,的中點,連接.

(1)求證:平面

(2)求二面角大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線, .

(1)求證:對,直線與圓總有兩個不同的交點;

(2)求弦的中點的軌跡方程,并說明其軌跡是什么曲線;

(3)是否存在實數(shù),使得原上有四點到直線的距離為?若存在,求出的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2012年,在“雜交水稻之父”袁隆平的實驗田內(nèi)種植了,兩個品種的水稻,為了篩選出更優(yōu)的品種,在,兩個品種的實驗田中分別抽取7塊實驗田,如圖所示的莖葉圖記錄了這14塊實驗田的畝產(chǎn)量(單位:),通過莖葉圖比較兩個品種的均值及方差,并從中挑選一個品種進行以后的推廣,有如下結(jié)論:①品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;②品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;③品種水稻比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;④品種水稻比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;其中正確結(jié)論的編號為( )

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率利潤保費收入)的頻率分布直方圖如圖所示:

(1)試估計這款保險產(chǎn)品的收益率的平均值;

(2)設每份保單的保費在20元的基礎上每增加元,對應的銷量為(萬份).從歷史銷售記錄中抽樣得到如下5組的對應數(shù)據(jù):

25

30

38

45

52

銷量為(萬份)

7.5

7.1

6.0

5.6

4.8

由上表,知有較強的線性相關關系,且據(jù)此計算出的回歸方程為

(。┣髤(shù)的值;

(ⅱ)若把回歸方程當作的線性關系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費定為多少元時此產(chǎn)品可獲得最大利潤,并求出最大利潤.注:保險產(chǎn)品的保費收入每份保單的保費銷量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與圓交于,兩點,過點的直線與圓交于,兩點.

若直線垂直平分弦,求實數(shù)的值;

已知點,在直線上(為圓心),存在定點(異于點),滿足:對于圓上任一點,都有為同一常數(shù),試求所有滿足條件的點的坐標及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某縣位于沙漠地帶,人與自然長期進行頑強的斗爭,到1998年底全縣的綠化率已達到30%。1999年開始,每年將出現(xiàn)這樣的局面,即原有沙漠面積的16%將被綠化,與此同時,由于各種原因,原有綠化面積的4%又被沙化。

(1)設全縣面積為1,1998年底綠化總面積為,經(jīng)過n年后綠化總面積為,求證:

(2)至少需要多少年的努力,才能使全縣的綠化率超過60%?(年取整數(shù),lg2=0.3010)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓C: 的一個頂點與拋物線: 的焦點重合,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點的直線l與橢圓C交于M、N兩點.

(1)求橢圓C的方程;

(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學生課外閱讀情況,隨機抽取了100名學生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。

(1)求的值,并根據(jù)頻率分布直方圖估計該校學生一周課外閱讀時間的平均值;

(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率。

查看答案和解析>>

同步練習冊答案