【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的極值;
(Ⅱ)若,且方程在區(qū)間內(nèi)有解,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ) 極小值為,極大值為. (Ⅱ)
【解析】
(Ⅰ)將a=b=1代入函數(shù)f(x)的解析式,求函數(shù)f(x)的導(dǎo)數(shù)f′(x),求出極值點(diǎn),并分析函數(shù)f(x)的單調(diào)性,即可確定函數(shù)的極大值和極小值;
(Ⅱ)由f(1)=1,得b=e﹣1﹣a,再由f(x)=1,得ex=ax2+bx+1,構(gòu)造函數(shù)g(x)=ex﹣ax2﹣bx﹣1,分析函數(shù)g(x)在區(qū)間(0,1)上的單調(diào)性,結(jié)合函數(shù)g(x)的極值正負(fù)確定方程f(x)=1在區(qū)間(0,1)內(nèi)有解的等價條件,從而構(gòu)造不等式求出實(shí)數(shù)a的取值范圍.
(Ⅰ),當(dāng)時,,
,得,∴在上單調(diào)遞增;
,得或,∴在和上單調(diào)遞減.
∴的極小值為,極大值為.
(Ⅱ)由得,由得,
設(shè),則在內(nèi)有零點(diǎn),設(shè)為在內(nèi)的一個零點(diǎn),
由知在和不單調(diào).
設(shè),則在和上均存在零點(diǎn),即在上至少有兩個零點(diǎn).
,,
當(dāng)時,,在上遞增,不可能有兩個及以上零點(diǎn),
當(dāng)時,,在上遞減,不可能有兩個及以上零點(diǎn),
當(dāng)時,令得,
∴在上遞減,在上遞增,在上存在最小值,
若有兩個零點(diǎn),則有,,,
,,
設(shè),,則,令,得,
當(dāng)時,,遞增;當(dāng)時,,遞減.
∴,∴恒成立.
由,,得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an)滿足a1=5,且a3,a6,a11成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an·3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為創(chuàng)建全國文明城市,推出“行人闖紅燈系統(tǒng)建設(shè)項(xiàng)目”,將針對闖紅燈行為進(jìn)行曝光.交警部門根據(jù)某十字路口以往的監(jiān)測數(shù)據(jù),從穿越該路口的行人中隨機(jī)抽查了人,得到如圖示的列聯(lián)表:
闖紅燈 | 不闖紅燈 | 合計 | |
年齡不超過歲 | |||
年齡超過歲 | |||
合計 |
(1)能否有的把握認(rèn)為闖紅燈行為與年齡有關(guān)?
(2)下圖是某路口監(jiān)控設(shè)備抓拍的個月內(nèi)市民闖紅燈人數(shù)的統(tǒng)計圖.請建立與的回歸方程,并估計該路口月份闖紅燈人數(shù).
附:
,
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】魚卷是泉州十大名小吃之一,不但本地人喜歡,而且深受外來游客的贊賞.小張從事魚卷生產(chǎn)和批發(fā)多年,有著不少來自零售商和酒店的客戶當(dāng)?shù)氐牧?xí)俗是農(nóng)歷正月不生產(chǎn)魚卷,客戶正月所需要的魚卷都會在上一年農(nóng)歷十二月底進(jìn)行一次性采購小張把去年年底采購魚卷的數(shù)量x(單位:箱)在的客戶稱為“熟客”,并把他們?nèi)ツ瓴少彽臄?shù)量制成下表:
采購數(shù)x |
| ||||
客戶數(shù) | 10 | 10 | 5 | 20 | 5 |
(1)根據(jù)表中的數(shù)據(jù)作出頻率分布直方圖,并估計采購數(shù)在168箱以上(含168箱)的“熟客”人數(shù);
(2)若去年年底“熟客”們采購的魚卷數(shù)量占小張去年年底總的銷售量的,估算小張去年年底總的銷售量(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(3)由于魚卷受到游客們的青睞,小張做了一份市場調(diào)查,決定今年年底是否在網(wǎng)上出售魚卷,若不在網(wǎng)上出售魚卷,則按去年的價格出售,每箱利潤為20元,預(yù)計銷售量與去年持平;若在網(wǎng)上出售魚卷,則需把每箱售價下調(diào)2至5元,且每下調(diào)m元()銷售量可增加1000m箱,求小張今年年底收入Y(單位:元)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用水清洗一份蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用1個單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù).
(1)求的值,并解釋其實(shí)際意義;
(2)現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備.某高中成功開設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程.
(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計 | |
學(xué)習(xí)大學(xué)先修課程 | 250 | ||
沒有學(xué)習(xí)大學(xué)先修課程 | |||
總計 | 150 |
(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進(jìn)行測試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗(yàn),根據(jù)測驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為分,分值高者為優(yōu),低者為差),則下面敘述不正確的是( )
A.甲的數(shù)據(jù)分析素養(yǎng)低于乙
B.乙的六大素養(yǎng)中邏輯推理最差
C.甲的數(shù)學(xué)建模素養(yǎng)差于邏輯推理素養(yǎng)
D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在年月日,某市物價部門對本市的家商場的某商品的一天銷售量及其價格進(jìn)行調(diào)查,家商場的售價元和銷售量件之間的一組數(shù)據(jù)如表所示:
價格 | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量 | 11 | 10 | 8 | 6 | 5 |
根據(jù)公式計算得相關(guān)系數(shù),其線性回歸直線方程是:,則下列說法正確的有( )
參考:
A.有的把握認(rèn)為變量具有線性相關(guān)關(guān)系
B.回歸直線恒過定點(diǎn)
C.
D.當(dāng)時,的估計值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com