【題目】某市為創(chuàng)建全國文明城市,推出“行人闖紅燈系統(tǒng)建設(shè)項(xiàng)目”,將針對闖紅燈行為進(jìn)行曝光.交警部門根據(jù)某十字路口以往的監(jiān)測數(shù)據(jù),從穿越該路口的行人中隨機(jī)抽查了人,得到如圖示的列聯(lián)表:

闖紅燈

不闖紅燈

合計(jì)

年齡不超過

年齡超過

合計(jì)

1)能否有的把握認(rèn)為闖紅燈行為與年齡有關(guān)?

2)下圖是某路口監(jiān)控設(shè)備抓拍的個(gè)月內(nèi)市民闖紅燈人數(shù)的統(tǒng)計(jì)圖.請建立的回歸方程,并估計(jì)該路口月份闖紅燈人數(shù).

附:

,

參考數(shù)據(jù):,

【答案】1)有的把握認(rèn)為闖紅燈行為與年齡有關(guān)(2,估計(jì)該路口月份闖紅燈人數(shù)為也可)

【解析】

1)由列聯(lián)表計(jì)算出卡方,與所給數(shù)據(jù)對比即可得出結(jié)論.

2)根據(jù)所給數(shù)據(jù)計(jì)算出,,,,即可得到回歸方程,代入計(jì)算可得.

1)由列聯(lián)表計(jì)算,

所以有的把握認(rèn)為闖紅燈行為與年齡有關(guān).

2)由題意得,,

當(dāng)時(shí),

所以估計(jì)該路口月份闖紅燈人數(shù)為也可)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,直線 的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)P是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從岳陽到郴州的快速列車包括起始站和終點(diǎn)站共有六站,將這六站分別記為.有一天,張兵和其他18 名旅客乘同一車廂離開岳陽,這些旅客中有些是湖北人,其他的是湖南人,認(rèn)識(shí)所有同車廂旅客的張兵觀測到:除了終點(diǎn)站,在每一站,當(dāng)火車到達(dá)時(shí),這節(jié)車廂上的湖南人的數(shù)目與下車旅客的數(shù)目相同,且這次行程中沒有新的旅客進(jìn)入這節(jié)車廂.張兵又進(jìn)一步觀測到:當(dāng)火車離開站時(shí),車廂內(nèi)有 12名旅客;當(dāng)火車離開站時(shí),還有 7 名旅客在這一車廂內(nèi);當(dāng)他準(zhǔn)備在站下車時(shí),還有5名旅客在這一車廂內(nèi).試問開始時(shí)火車的這一節(jié)車廂有多少湖北人,有多少湖南人?且在旅途中這些數(shù)目如何變化?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水資源與永恒發(fā)展2015年聯(lián)合國世界水資源日主題.近年來,某企業(yè)每年需要向自來水廠繳納水費(fèi)約4萬元,為了緩解供水壓力,決定安裝一個(gè)可使用4年的自動(dòng)污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(fèi)(單位:萬元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為02.為了保證正常用水,安裝后采用凈水裝置凈水和自來水廠供水互補(bǔ)的用水模式.假設(shè)在此模式下,安裝后該企業(yè)每年向自來水廠繳納的水費(fèi) C(單位:萬元)與安裝的這種凈水設(shè)備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設(shè)備的費(fèi)用與該企業(yè)4年共將消耗的水費(fèi)之和.

1) 試解釋的實(shí)際意義,請建立y關(guān)于x的函數(shù)關(guān)系式并化簡;

2) 當(dāng)x為多少平方米時(shí),y取得最小值?最小值是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面;

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技公司新研制生產(chǎn)一種特殊疫苗,為確保疫苗質(zhì)量,定期進(jìn)行質(zhì)量檢驗(yàn).某次檢驗(yàn)中,從產(chǎn)品中隨機(jī)抽取100件作為樣本,測量產(chǎn)品質(zhì)量體系中某項(xiàng)指標(biāo)值,根據(jù)測量結(jié)果得到如下頻率分布直方圖:

(1)求頻率分布直方圖中的值;

(2)技術(shù)分析人員認(rèn)為,本次測量的該產(chǎn)品的質(zhì)量指標(biāo)值X服從正態(tài)分布,若同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,計(jì)算,并計(jì)算測量數(shù)據(jù)落在(187.8,212.2)內(nèi)的概率;

(3)設(shè)生產(chǎn)成本為y元,質(zhì)量指標(biāo)值為,生產(chǎn)成本與質(zhì)量指標(biāo)值之間滿足函數(shù)關(guān)系假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,試計(jì)算生產(chǎn)該疫苗的平均成本.

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值

(Ⅱ),且方程在區(qū)間內(nèi)有解求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,已知,.

(1)求證:;

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案