log2(x2-5x-2)=2.
考點:函數(shù)的零點與方程根的關(guān)系,對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由log2(x2-5x-2)=2,得x2-5x-2=4,由此能求出x.
解答: 解:∵log2(x2-5x-2)=2,
∴x2-5x-2=4,
解得x=-1或x=6,
經(jīng)檢驗,得x=-1或x=6都是原方程的解.
點評:本題考查對數(shù)方程的求解,是基礎(chǔ)題,解題時要注意對數(shù)性質(zhì)和運算法則的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a>0).
(1)判斷函數(shù)f(x)在(0,e]上的單調(diào)性(e為自然對數(shù)的底);
(2)記f′(x)為f(x)的導(dǎo)函數(shù),若函數(shù)g(x)=x3-
a
2
x2+x2f′(x)在區(qū)間(
1
2
,3)上存在極值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
m
x
,m∈R.
(Ⅰ)當(dāng)m=e(e為自然對數(shù)的底數(shù))時,求f(x)的極小值;
(Ⅱ)討論函數(shù)g(x)=f′(x)-
x
3
零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,若S5=25,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)bn=
1
Sn
(n∈N*),證明:對一切正整數(shù)n,有b1+b2+…+bn
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,f(x)=
x
x-a
,g(x)=
xex
x-a
,求曲線y=f(x)與y=g(x)在x=0處的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面內(nèi),設(shè)A,B,O為定點,P為動點,則下列集合分別表示什么圖形:
(1){P|PA=PB};
(2){P|PO=1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)重視環(huán)境保護(hù),綠色植被面積呈上升趨勢,經(jīng)過調(diào)查,現(xiàn)有森林面積為10000m2,每年增長10%,經(jīng)過x年,森林面積為ym2
(1)寫出x,y之間的函數(shù)關(guān)系式;
(2)求出經(jīng)過10年后森林的面積.(可借助于計算器)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x丨x2-3x+2=0},B={x丨a-1<x<2a+3},A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1.
(1)當(dāng)a=1時,求曲線f(x)在x=1處的切線方程;
(2)當(dāng)a=
1
3
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈[1,2],?x1∈[0,1],使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案