【題目】甲、乙、丙三人獨(dú)立地對(duì)某一技術(shù)難題進(jìn)行攻關(guān).甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級(jí)不做任何獎(jiǎng)勵(lì);若該技術(shù)難題被攻克,上級(jí)會(huì)獎(jiǎng)勵(lì)a萬(wàn)元.獎(jiǎng)勵(lì)規(guī)則如下:若只有1人攻克,則此人獲得全部獎(jiǎng)金a萬(wàn)元;若只有2人攻克,則獎(jiǎng)金獎(jiǎng)給此二人,每人各得 萬(wàn)元;若三人均攻克,則獎(jiǎng)金獎(jiǎng)給此三人,每人各得 萬(wàn)元.設(shè)甲得到的獎(jiǎng)金數(shù)為X,求X的分布列和數(shù)學(xué)期望.

【答案】
(1)解:
(2)解:X的可能取值分別為

, ,

,

∴X的分布列為

X

0

a

P

EX= = (萬(wàn)元)


【解析】(1)利用相互獨(dú)立事件的概率求不能被攻克的概率,然后利用對(duì)立事件的概率求解;(2)分別求出隨機(jī)變量X取為 的概率,列出分布列,然后直接代入期望公式求期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,如圖.

1求證:平面AB1D1∥平面C1BD;

2試找出體對(duì)角線A1C與平面AB1D1和平面C1BD的交點(diǎn)E,F(xiàn),并證明:A1E=EF=FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐PABCD中,底面是邊長(zhǎng)為a的正方形,側(cè)棱PDaPAPCa,

(1)求證:PD⊥平面ABCD

(2)求證:平面PAC⊥平面PBD;

(3)求二面角PACD的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:函數(shù)y=sin2x的最小正周期為 ;命題q:函數(shù)y=cosx的圖象關(guān)于直線x= 對(duì)稱.則下列判斷正確的是(
A.p為真
B.¬q為假
C.p∧q為假
D.p∨q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且.

1)試求的值;

2)用定義證明函數(shù)上單調(diào)遞增;

(3)設(shè)關(guān)于的方程的兩根為,試問(wèn)是否存在實(shí)數(shù),使得不等式對(duì)任意的恒成立?若存在,求出的取值范圍;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點(diǎn).
(1)求證:平面AED⊥平面A1FD1;
(2)在AE上求一點(diǎn)M,使得A1M⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),證明:e﹣2<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)

)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

)是否存在常數(shù),當(dāng)時(shí), 在值域?yàn)閰^(qū)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=4 x的焦點(diǎn)為F,A、B為拋物線上兩點(diǎn),若 =3 ,O為坐標(biāo)原點(diǎn),則△AOB的面積為(
A.8
B.4
C.2
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案