【題目】設(shè)命題p:函數(shù)y=sin2x的最小正周期為 ;命題q:函數(shù)y=cosx的圖象關(guān)于直線(xiàn)x= 對(duì)稱(chēng).則下列判斷正確的是(
A.p為真
B.¬q為假
C.p∧q為假
D.p∨q為真

【答案】C
【解析】解:由于函數(shù)y=sin2x的最小正周期為π,故命題p是假命題;函數(shù)y=cosx的圖象關(guān)于直線(xiàn)x=kπ對(duì)稱(chēng),k∈Z,故q是假命題.結(jié)合復(fù)合命題的判斷規(guī)則知:¬q為真命題,p∧q為假命題,p∨q為是假命題.

故選C.

【考點(diǎn)精析】本題主要考查了復(fù)合命題的真假和余弦函數(shù)的對(duì)稱(chēng)性的相關(guān)知識(shí)點(diǎn),需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真;余弦函數(shù)的對(duì)稱(chēng)性:對(duì)稱(chēng)中心;對(duì)稱(chēng)軸才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M過(guò)點(diǎn)A(1,3),B(4,2),且圓心在直線(xiàn)y=x﹣3上.
(Ⅰ)求圓M的方程;
(Ⅱ)若過(guò)點(diǎn)(﹣4,1)的直線(xiàn)l與圓M相切,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè)投資類(lèi)產(chǎn)品的收益與投資額成正比,投資類(lèi)產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬(wàn)元時(shí)兩類(lèi)產(chǎn)品的收益分別為0125萬(wàn)元和05萬(wàn)元

1分別寫(xiě)出兩類(lèi)產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬(wàn)元資金,全部用于理財(cái)投資問(wèn):怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知右焦點(diǎn)為F(c,0)的橢圓M: =1(a>b>0)過(guò)點(diǎn) ,且橢圓M關(guān)于直線(xiàn)x=c對(duì)稱(chēng)的圖形過(guò)坐標(biāo)原點(diǎn).
(1)求橢圓M的方程;
(2)過(guò)點(diǎn)(4,0)且不垂直于y軸的直線(xiàn)與橢圓M交于P,Q兩點(diǎn),點(diǎn)Q關(guān)于x軸的對(duì)稱(chēng)原點(diǎn)為E,證明:直線(xiàn)PE與x軸的交點(diǎn)為F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程關(guān)于時(shí)間的函數(shù)關(guān)系式分別為,,有以下結(jié)論:

①當(dāng)時(shí),甲走在最前面;

②當(dāng)時(shí),乙走在最前面;

③當(dāng)時(shí),丁走在最前面,當(dāng)時(shí),丁走在最后面;

④丙不可能走在最前面,也不可能走在最后面;

⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.

其中,正確結(jié)論的序號(hào)為 (把正確結(jié)論的序號(hào)都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖C,D是以AB為直徑的圓上的兩點(diǎn),,F是AB上的一點(diǎn),且,將圓沿AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知

1求證:AD平面BCE

(2)求證AD//平面CEF;

(3)求三棱錐A-CFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人獨(dú)立地對(duì)某一技術(shù)難題進(jìn)行攻關(guān).甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級(jí)不做任何獎(jiǎng)勵(lì);若該技術(shù)難題被攻克,上級(jí)會(huì)獎(jiǎng)勵(lì)a萬(wàn)元.獎(jiǎng)勵(lì)規(guī)則如下:若只有1人攻克,則此人獲得全部獎(jiǎng)金a萬(wàn)元;若只有2人攻克,則獎(jiǎng)金獎(jiǎng)給此二人,每人各得 萬(wàn)元;若三人均攻克,則獎(jiǎng)金獎(jiǎng)給此三人,每人各得 萬(wàn)元.設(shè)甲得到的獎(jiǎng)金數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合=冪函數(shù)=的圖象不過(guò)原點(diǎn),則集合A的真子集的個(gè)數(shù)為

A. 1 B. 2 C. 3 D. 無(wú)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線(xiàn)C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ2(1+2sin2θ)=3.
(Ⅰ)寫(xiě)出C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)直線(xiàn)C1與曲線(xiàn)C2相交于A,B兩點(diǎn),點(diǎn)M(1,0),求||MA|﹣|MB||.

查看答案和解析>>

同步練習(xí)冊(cè)答案