“α=
π
4
”是“cos2α=0”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不是充分條件也不是必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)余弦的公式和充分條件和必要條件的定義即可得到結論.
解答: 解:當α=
π
4
時,cos2α=cos
π
2
=0

當cos2α=0時,2α=±
π
2
+2kπ
(k∈Z),得α=±
π
4
+kπ
,推不出α=
π
4

∴“α=
π
4
”是“cos2α=0”的充分不必要條件,
故選:A.
點評:本題主要考查充分條件和必要條件的判斷,利用余弦的公式是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

焦點為F的拋物線y2=4x上有三點A、B、C滿足:①△ABC的重心是F;②|FA|、|FB|、|FC|成等差數(shù)列.則直線AC的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a∈R,則“a=3”是“(a+1)(a-3)=0”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知定義在R上的函數(shù)y=f(x)滿足f(x)=f(4-x),且當x≠2時,其導函數(shù)f′(x)滿足f′(x)>
1
2
xf′(x),若a∈(2,3),則(  )
A、f(log2a)<f(2a)<f(2)
B、f(2a)<f(2)<f(log2a)
C、f(2a)<f(log2a)<f(2)
D、f(2)<f(log2a)<f(2a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,則復數(shù)
2-i
3+i
等于( 。
A、
1
2
+
1
2
i
B、-
1
2
+
1
2
i
C、
1
2
-
1
2
i
D、-
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓O中,弦PQ滿足|PQ|=2,則
PQ
PO
=(  )
A、2
B、1
C、
1
2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2-4x=0,直線l:x+my-3=0,則( 。
A、l與C相交
B、l與C相切
C、l與C相離
D、以上三個選項均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題的是( 。
A、?x∈R,x2>0
B、?x∈R,-1<sinx<1
C、?x0∈R,2x0<0
D、?x0∈R,tanx0=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知α為第三象限角,且sinα=-
5
13
,求cosα,tanα的值.
(2)已知sin(π-α)=
1
3
,求
sin(α-π)cos(2π-α)sin(
π
2
-α)
cos(-π-α)sin(-π-α)
的值.

查看答案和解析>>

同步練習冊答案