14.某校高三年級(jí)在一次質(zhì)量考試中,考生成績(jī)情況如表所示:
 成績(jī)
累別
[0,400)[400,480)[480,550)[550,750)
文科考生(人數(shù))673519z
理科考生(人數(shù))53y9
已知用分層抽樣的方法(按文理科分層)在不低于550分的考生中隨機(jī)抽取5名考生進(jìn)行質(zhì)量分析,其中文科考生抽取了2名,并且該校不低于480分的文科理科考生人數(shù)之比為1:2,不低于400分的文科理科考生人數(shù)之比為2:5.
(1)求本次高三參加考試的總?cè)藬?shù);
(2)如圖是其中6名學(xué)生的數(shù)學(xué)成績(jī)的莖葉圖,現(xiàn)從這6名考生中隨機(jī)抽取3名考生進(jìn)行座談,求抽取的考生數(shù)學(xué)成績(jī)均不低于135分的概率.

分析 (1)由分層抽樣可得x,y,z的方程,解方程可得x,y,z值,即可求出次高三參加考試的總?cè)藬?shù)
(2)列舉法可得總的基本事件共20種,符合條件的共4種,由古典概型的概率公式計(jì)算可得.

解答 解:(1)依題意$\frac{2}{z}$=$\frac{5-2}{9}$,∴z=6,
$\frac{19+6}{y+9}$=$\frac{1}{2}$,$\frac{35+19+6}{x+y+9}$=$\frac{2}{5}$ 解得x=100,y=41
所以本次高三參加考試的總?cè)藬?shù)為330人
(2)在這6名考生中隨機(jī)抽取3名考生包含的基本事件為:
(121,130,135),(121,130,138),(121,130,142),(121,130,144),(121,135,138),
(121,135,142),(121,135,144),(121,138,142),(121,138,144),(121,142,144),(130,135,138),(130,135,142),(130,135,144),(130,138,142),(130,138,144),
(130,142,144),(135,138,142),(135,138,144),(135,142,144),(138,142,144)共20個(gè),
其中“抽取的考生成績(jī)均不低于13(5分)”包含的基本事件有4個(gè),
其概率為$\frac{4}{20}$=$\frac{1}{5}$

點(diǎn)評(píng) 本題考查古典概型及其概率公式,涉及莖葉圖和分層抽樣,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)T(t,0)(t>0),且過(guò)點(diǎn)F的直線,交C于A,B.
(I)當(dāng)t=2時(shí),若過(guò)T的直線交拋物線C于兩點(diǎn),且兩交點(diǎn)的縱坐標(biāo)乘積為-4,求焦點(diǎn)F的坐標(biāo);
(Ⅱ)如圖,直線AT、BT分別交拋物線C于點(diǎn)P、Q,連接PQ交x軸于點(diǎn)M,證明:|OF|,|OT|,|OM|成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓M的離心率為$\frac{1}{2}$,橢圓上異于長(zhǎng)軸頂點(diǎn)的任意點(diǎn)A與左右兩焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形中面積的最大值為$\sqrt{3}$.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)若A與C是橢圓M上關(guān)于x軸對(duì)稱(chēng)的兩點(diǎn),連接CF2與橢圓的另一交點(diǎn)為B,求證:直線AB與x軸交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知拋物線x2=2py(p>0)的頂點(diǎn)到焦點(diǎn)的距離為1,過(guò)點(diǎn)P(0,p)作直線與拋物線交于A(x1,y1),
B(x2,y2)兩點(diǎn),其中x1>x2
(1)若直線AB的斜率為$\frac{1}{2}$,過(guò)A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程;
(2)若$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,是否存在異于點(diǎn)P的點(diǎn)Q,使得對(duì)任意λ,都有$\overrightarrow{QP}$⊥($\overrightarrow{QA}$-λ$\overrightarrow{QB}$),若存在,求Q點(diǎn)坐標(biāo);不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={2,3,4,6},B={2,4,5,7},則A∩B的子集的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過(guò)其右焦點(diǎn)F作圓x2+y2=a2的兩條切線,切點(diǎn)記作C,D,原點(diǎn)為O,∠COD=$\frac{π}{2}$,則雙曲線的離心率為(  )
A.$\frac{3}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為120°,|x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$(x,y∈R),則|x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$|的取值范圍是[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在各項(xiàng)為正數(shù)的數(shù)列{an}中,數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$).求a1,a2,a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在直角坐標(biāo)系xOy中,點(diǎn)P是單位圓上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線與射線y=$\sqrt{3}$x(x≥0)交于點(diǎn)Q,與x軸交于點(diǎn)M.記∠MOP=α,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)若sinα=$\frac{1}{3}$,求cos∠POQ;
(Ⅱ)求△OPQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案