分析 (1)把要求得不等式去掉絕對值,化為與之等價的3個不等式組,求得每個不等式組的解集,再取并集,即得所求.
(2)把要求得不等式去掉絕對值,化為與之等價的3個不等式組,求得每個不等式組的解集,再取并集,即得所求.
解答 解:(1)由不等式|x+2|+|x-2|>6 可得$\left\{\begin{array}{l}{x<-2}\\{-x-2+2-x>6}\end{array}\right.$①,或$\left\{\begin{array}{l}{-2≤x≤2}\\{x+2+2-x>6}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>2}\\{x+2+x-2>6}\end{array}\right.$③.
解①求得x<-3,解②求得x∈∅,解③求得x>3,
故原不等式的解集為{x|x<-3,或x>3}.
(2)由不等式|2x-1|-|x-3|>5,可得 $\left\{\begin{array}{l}{x<\frac{1}{2}}\\{1-2x-(3-x)>5}\end{array}\right.$①,或$\left\{\begin{array}{l}{\frac{1}{2}≤x≤3}\\{2x-1-(3-x)>5}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>3}\\{2x-1-(x-3)>5}\end{array}\right.$③.
解①求的x<-7,解求得x∈∅,解③求得x>3.
綜上可得,原不等式的解集為{x|x<-7,或x>3}.
點評 本題主要考查解絕對值不等式,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 62 | B. | 64 | C. | 84 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com