1.f(x)=$\int_{\;\;-1}^{\;1}{(x-1)dx=}$(  )
A.-2B.2C.0D.1

分析 根據(jù)定積分中被積函數(shù)的特征以及積分上限和下限的關(guān)系解答.

解答 解:f(x)=$\int_{\;\;-1}^{\;1}{(x-1)dx=}$${∫}_{-1}^{1}xdx-x{|}_{-1}^{1}$=0-2=-2;
故選:A.

點評 本題考查了定積分的計算;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“sin2α=$\frac{1}{2}$”是“α=kπ+$\frac{5}{12}$π,k∈Z”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(Ⅰ)若直線MN的斜率為$\frac{3}{4}$,求C的離心率;
(Ⅱ)若點M到F1、F2的距離之和為4,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等差數(shù)列{an}中,a5+a10=58,a4+a9=50,則它的前10項和為210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)解不等式|x+2|+|x-2|>6;    
(2)解不等式|2x-1|-|x-3|>5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.我們把平面幾何里相似形的概念推廣到空間:如果兩個幾何體大小不一定相等,但形狀完全相同,就把它們叫做相似體.下列幾何體中,一定屬于相似體的( 。
①兩個球體;②兩個長方體;③兩個正四面體;④兩個正三棱柱;⑤兩個正四棱椎.
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3-ax2+4有兩個正零點,則實數(shù)a的取值范圍是(  )
A.a>1B.a>$\frac{3}{2}$C.a>2D.a>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題正確的是( 。
A.若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,則$\overrightarrow b=\overrightarrow c$B.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|$,則$\overrightarrow a•\overrightarrow b=0$
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$D.若$\overrightarrow a$與$\overrightarrow b$是單位向量,則$\overrightarrow a•\overrightarrow b=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知正方體ABCD-A1B1C1D1的棱長為a,M,N分別是棱AA1,CC1的中點,
(Ⅰ)求正方體ABCD-A1B1C1D1的內(nèi)切球的半徑與外接球的半徑之比;
(Ⅱ)求四棱錐A-MB1ND的體積.

查看答案和解析>>

同步練習(xí)冊答案