9.“m>n>0”是方程mx2+ny2=1表示橢圓的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 方程mx2+ny2=1表示橢圓?m>0,n>0,m≠n.即可判斷出結(jié)論.

解答 解:方程mx2+ny2=1表示橢圓?m>0,n>0,m≠n.
因此“m>n>0”是方程mx2+ny2=1表示橢圓的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某公司的班車(chē)分別在7:30,8:30發(fā)車(chē),小明在7:50至8:30之間到達(dá)發(fā)車(chē)站乘坐班車(chē),且到達(dá)發(fā)車(chē)站的時(shí)刻是隨機(jī)的,則他等車(chē)時(shí)間不超過(guò)15分鐘的概率是( 。
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{2}{3}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+6≥0}\\{x≤3}\\{x+y+k≥0}\end{array}\right.$,且z=2x+4y的最小值為2,則常數(shù)k=( 。
A.2B.-2C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=ax2+x-a,a∈R
(Ⅰ)若a=1,解不等式f(x)>1
(Ⅱ)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為AA1,AB,BB1,B1C1的中點(diǎn),則異面直線EF與GH所成的角等于( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知雙曲線C與雙曲線$\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{48}$=1有相同的漸近線,且與橢圓$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{169}$=1有相同的焦點(diǎn),則雙曲線C的方程為(  )
A.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)命題p:f(x)=x2+(2m-2)x+3在區(qū)間(-∞,0)上是減函數(shù);命題q:“不等式x2-4x+1-m≤0無(wú)解”.如果命題p∨q為真,命題p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)P(t,t-1),t∈R,點(diǎn)E是圓x2+y2=$\frac{1}{4}$上的動(dòng)點(diǎn),點(diǎn)F是圓(x-3)2+(y+1)2=$\frac{9}{4}$上的動(dòng)點(diǎn),則|PF|-|PE|的最大值為(  )
A.2B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若log2x+log2y=3,則2x+y的最小值是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案