4.“sinα>0”是“角α是第一象限的角”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義進行判斷即可.

解答 解:若sinα>0,則角α是第一象限的角或角α是第二象限的角,或α在y軸正半軸上,
則“sinα>0”是“角α是第一象限的角”的必要不充分條件,
故選:B

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)三角函數(shù)角的定義是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.下表記錄了某學生進入高三以來各次數(shù)學考試的成績
考試第次123456789101112
成績(分)657885878899909493102105116
將第1次到第12次的考試成績依次記為a1,a2,…,a12.圖2是統(tǒng)計上表中成績在一定范圍內(nèi)考試次數(shù)的一個算法流程圖.那么算法流程圖輸出的結(jié)果是7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)等差數(shù)列{an}的前n項和為An,等比數(shù)列{bn}的前n項和為Bn,若a3=b3,a4=b4,且$\frac{{{A_5}-{A_3}}}{{{B_4}-{B_2}}}=7$,則數(shù)列{bn}的公比q=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)$f(x)={(\sqrt{x}+\sqrt{2})^2}$,(x≥0),又數(shù)列{an}中,an>0,a1=2,該數(shù)列的前n項和記為Sn,對所有大于1的自然數(shù)n都有Sn=f(Sn-1).
(Ⅰ)求{an}的通項公式;
(Ⅱ)記bn=$\frac{{{a_{n+1}}^2+{a_n}^2}}{{2{a_{n+1}}{a_n}}}$,{bn}其前n項和為Tn,證明:Tn<n+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.正方體ABCD-A1B1C1D1的棱長為2,則三棱錐B-A1B1C1公共部分的體積等于$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,AB、AC是⊙O的兩條切線,切點分別為B、C.若∠BAC=60°,BC=6,則⊙O的半徑為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,點C是以AB為直徑的圓O上不與A、B重合的一個動點,S是圓O所在平面外一點,且總有SC⊥平面ABC,M是SB的中點,AB=SC=2.
(Ⅰ)求證:OM⊥BC;
(Ⅱ)當四面體S-ABC的體積最大時,設(shè)直線AM與平面ABC所成的角為α,二面角B-SA-C的大小為β,分別求tanα,tanβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設(shè)a∈R,則“a=-1”是“f(x)=|(ax-2)x|在(0,+∞)上單調(diào)遞增”的( 。
A.充要條件B.既不充分也不必要條件
C.充分不必要條件D.必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.復數(shù)z=$\frac{2l}{1+i}$(i是虛數(shù)單位)是(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

同步練習冊答案