【題目】已知函數(shù),對(duì)任意,都有.
討論的單調(diào)性;
當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
【答案】(1) 當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在和上單調(diào)遞減,在上單調(diào)遞增.;(2)
【解析】
(1)根據(jù)可得,得到,求導(dǎo)后,分別在和兩種情況下討論導(dǎo)函數(shù)符號(hào),得到單調(diào)性;(2)根據(jù)(1)中所求單調(diào)性,否定的情況;在時(shí),首先求得為一個(gè)零點(diǎn);再利用零點(diǎn)存在性定理求解出中存在一個(gè)零點(diǎn);根據(jù),可確定另一個(gè)零點(diǎn),從而可知滿足題意.
(1)由,得
則,
若時(shí),即時(shí),在單調(diào)遞減
若,即時(shí),有兩個(gè)零點(diǎn)
零點(diǎn)為:,
又開口向下
當(dāng)時(shí),,,單調(diào)遞減
當(dāng)時(shí),,,單調(diào)遞增
當(dāng)時(shí),,,單調(diào)遞減
綜上所述,當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在和上單調(diào)遞減,在上單調(diào)遞增
(2)由(1)知當(dāng)時(shí),單調(diào)遞減,不可能有三個(gè)不同的零點(diǎn);
當(dāng)時(shí),在和上單調(diào)遞減,在上單調(diào)遞增
,又,有
在上單調(diào)遞增,,
令,
令,單調(diào)遞增
由,求得
當(dāng)時(shí),單調(diào)遞減,
在上單調(diào)遞增
故
故,,
由零點(diǎn)存在性定理知在區(qū)間有一個(gè)根,設(shè)為:
又,得,,是的另一個(gè)零點(diǎn)
故當(dāng)時(shí),存在三個(gè)不同的零點(diǎn),,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學(xué)、生物、地理四門中選兩科,按照等級(jí)賦分計(jì)入高考成績,等級(jí)賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學(xué)、生物、地理四門等級(jí)考試科目的考生原始成績從高到低劃分為五個(gè)等級(jí),確定各等級(jí)人數(shù)所占比例分別為,,,,,等級(jí)考試科目成績計(jì)入考生總成績時(shí),將至等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到、、、、五個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)分,等級(jí)轉(zhuǎn)換分滿分為100分.具體轉(zhuǎn)換分?jǐn)?shù)區(qū)間如下表:
等級(jí) | |||||
比例 | |||||
賦分區(qū)間 |
而等比例轉(zhuǎn)換法是通過公式計(jì)算:
其中,分別表示原始分區(qū)間的最低分和最高分,、分別表示等級(jí)分區(qū)間的最低分和最高分,表示原始分,表示轉(zhuǎn)換分,當(dāng)原始分為,時(shí),等級(jí)分分別為、
假設(shè)小南的化學(xué)考試成績信息如下表:
考生科目 | 考試成績 | 成績等級(jí) | 原始分區(qū)間 | 等級(jí)分區(qū)間 |
化學(xué) | 75分 | 等級(jí) |
設(shè)小南轉(zhuǎn)換后的等級(jí)成績?yōu)?/span>,根據(jù)公式得:,
所以(四舍五入取整),小南最終化學(xué)成績?yōu)?7分.
已知某年級(jí)學(xué)生有100人選了化學(xué),以半期考試成績?yōu)樵汲煽冝D(zhuǎn)換本年級(jí)的化學(xué)等級(jí)成績,其中化學(xué)成績獲得等級(jí)的學(xué)生原始成績統(tǒng)計(jì)如下表:
成績 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人數(shù) | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)從化學(xué)成績獲得等級(jí)的學(xué)生中任取2名,求恰好有1名同學(xué)的等級(jí)成績不小于96分的概率;
(2)從化學(xué)成績獲得等級(jí)的學(xué)生中任取5名,設(shè)5名學(xué)生中等級(jí)成績不小于96分人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)過原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線與軸軸分別交于兩點(diǎn).
①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求直線與曲線相切時(shí),切點(diǎn)的坐標(biāo);
(2)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)若方程有兩個(gè)實(shí)數(shù)根,,且,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , 為線段上的點(diǎn).
(1)證明: 平面;
(2)若是的中點(diǎn),求與平面所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的圖象上存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形(其中為坐標(biāo)原點(diǎn)),且斜邊的中點(diǎn)恰好在軸上,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 的左右焦點(diǎn)分別為的、,離心率為;過拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長分別交于、兩點(diǎn),連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com