9.函數(shù)$f(x)={log_3}(-{x^2}+2x)$的單調(diào)遞減區(qū)間為(  )
A.(1,+∞)B.(1,2)C.(0,1)D.(-∞,1)

分析 令t=-x2+2x>0,求得函數(shù)的定義域,f(x)=g(t)=log3t,本題即求函數(shù)t在定義域上的減區(qū)間,再利用二次函數(shù)的性質(zhì)可得結(jié)論.

解答 解:令t=-x2+2x>0,求得0<x<2,可得函數(shù)的定義域?yàn)椋?,2),f(x)=g(t)=log3t,
故本題即求函數(shù)t在(0,2)上的減區(qū)間.
再利用二次函數(shù)的性質(zhì)可得函數(shù)t在(0,2)上的減區(qū)間 為(1,2),
故選:B.

點(diǎn)評 本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知0(0,0),A(3,0),B(0,4),P是△OAB的內(nèi)切圓上一動點(diǎn),則以PO、PA、PB為半徑的三個(gè)圓面積之和的最大值為( 。
A.10πB.12πC.22πD.25π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)滿足下列性質(zhì):
(1)定義域?yàn)镽,值域?yàn)閇1,+∞);   
(2)圖象關(guān)于x=2對稱   
(3)函數(shù)在(-∞,0)上是減函數(shù)
請寫出函數(shù)f(x)的一個(gè)解析式(x-2)2+1(只要寫出一個(gè)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\sqrt{3}sinωx+2{cos^2}\frac{ωx}{2}-1(ω>0)$的最小正周期為π.對于函數(shù)f(x),下列說法正確的是( 。
A.在$[\frac{π}{6},\frac{2π}{3}]$上是增函數(shù)
B.圖象關(guān)于直線$x=\frac{5π}{12}$對稱
C.圖象關(guān)于點(diǎn)$(-\frac{π}{3},0)$對稱
D.把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象關(guān)于y軸對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知不等式ax2-2ax+2a+3>0的解集為R,則a的取值范圍是(  )
A.a≥0B.a>0C.a≥-3D.a>-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)x∈R,則“|x-2|<1”是“x2+x-2>0”的充分不必要條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a>0且a≠1,證明:am+n+1>am+an(m,n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)x1,x2為函數(shù)f(x)=ax2+(b-1)x+1(a,b∈R,a>0)兩個(gè)不同零點(diǎn).
(1)若x1=1,且對任意x∈R,都有f(2-x)=f(2+x),求f(x);
(2)若b=2a-3,則關(guān)于x的方程f(x)=|2x-a|+2是否存在負(fù)實(shí)根?若存在,求出該負(fù)根的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.${∫}_{1}^{2}$2xdx=3.

查看答案和解析>>

同步練習(xí)冊答案