8.已知-90°<α<90°,-90°<β<90°,求α-$\frac{β}{2}$的范圍.

分析 利用不等式的基本性質(zhì)即可得到答案.

解答 解:由-90°<β<90°,
∴-45°<$-\frac{β}{2}$<45°,
那么:α-$\frac{β}{2}$=$α+(-\frac{β}{2})$;
∵-90°<α<90°,
∴-135°<α-$\frac{β}{2}$<135°.

點(diǎn)評(píng) 本題主要考查了不等式的基本性質(zhì):同向不等式可以相加.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx,g(x)=f[tx-(t-1)m]-tf(x),(其中m,t為常數(shù)且0<t<1,m>0).
(Ⅰ)求g(x)的極值;
(Ⅱ)?n>0,是否存在x0>0,使得|$\frac{{f({x_0}+1)}}{x_0}-1}$|<n成立,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合A={1,cosθ},B={0,$\frac{1}{2}$,1},若A⊆B,則銳角θ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.三個(gè)數(shù)0.76,60.7,log76的大小關(guān)系為(  )
A.0.76<log76<60.7B.0.76<60.7<log76C.log76<60.7<0.76D.log76<0.76<60.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-x(x≥0)}\\{x+1(x<0)}\end{array}}$,則f(2)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.袋中混裝著10個(gè)大小相同的球(編號(hào)不同),其中6只白球,4只紅球,為了把紅球與白球區(qū)分開(kāi)來(lái),采取逐只抽取檢查,若恰好經(jīng)過(guò)6次抽取檢查,正好把所有白球和紅球區(qū)分出來(lái)了,則這樣的抽取方式共有7920種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若$\overrightarrow n$=(-1,$\sqrt{3}$)是直線l的一個(gè)法向量,則l的傾斜角的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.sin(${\frac{π}{4}$+$arcsin\frac{1}{2}}$)=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=lg(2+x)-lg(2-x).
(1)求f(x)的定義域;
(2)判定f(x)的奇偶性.

查看答案和解析>>

同步練習(xí)冊(cè)答案