18.設(shè)函數(shù)f(x)=lg(2+x)-lg(2-x).
(1)求f(x)的定義域;
(2)判定f(x)的奇偶性.

分析 (1)對(duì)數(shù)函數(shù)的真數(shù)要大于0,即可求出定義域.
(2)根據(jù)奇偶性的定義及性質(zhì)直接判斷即可.

解答 解:(1)由題意:可得:$\left\{\begin{array}{l}{2+x>0}\\{2-x>0}\end{array}\right.$,
解得:-2<x<2,
∴f(x)的定義域?yàn)閇-2,2].
(2)由(1)可知定義域關(guān)于原點(diǎn)對(duì)稱.
由f(x)=lg(2+x)-lg(2-x).
那么:f(-x)=lg(2-x)-lg(2+x)
=-[lg(2+x)-lg(2-x)]
=-f(x)
所以:f(x)是奇函數(shù).

點(diǎn)評(píng) 本題考查了函數(shù)定義域的求法和奇偶性在判斷.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知-90°<α<90°,-90°<β<90°,求α-$\frac{β}{2}$的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某種商品將在某一段時(shí)間內(nèi)進(jìn)行提價(jià),提價(jià)方案有三種:
第一種:先提價(jià)m%,再提價(jià)n%;
第二種:先提價(jià)$\frac{m+n}{2}$%,再提價(jià)$\frac{m+n}{2}$%;
第三種:一次性提價(jià)(m+n)%.
已知m>n>0,則提價(jià)最多的方案是第二種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算.
(1)4x${\;}^{\frac{1}{4}}}$(-3x${\;}^{\frac{1}{4}}}$y${\;}^{-\frac{1}{3}}}}$)÷(-6x${\;}^{\frac{1}{2}}}$y${\;}^{\frac{2}{3}}}}$);
(2)($\frac{8}{27}$)${\;}^{-\frac{1}{3}}}$-(π-1)0+$\sqrt{2\frac{1}{4}}$;
(3)log3$\sqrt{27}$+lg$\frac{2}{5}$-lg4;
(4)已知log73=a,log74=b,求log748.( 用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若函數(shù)f(x)=x2-ax+2(a為常數(shù))在[1,+∞)上單調(diào)遞增,則a∈( 。
A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.命題“p:1<k<9”是命題“q:方程$\frac{x^2}{9-k}$+$\frac{y^2}{k-1}$=1表示橢圓”的必要不充分條件.(填“充要”或“充分不必要”或“必要不充分”或“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.將指數(shù)函數(shù)y=2x的圖象向右平移2個(gè)單位長(zhǎng)度后,得到函數(shù)y=f(x)的圖象,則f(x)=2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知兩定點(diǎn)M(4,0),N(1,0),動(dòng)點(diǎn)P滿足$\overrightarrow{MN}$•$\overrightarrow{MP}$=6|$\overrightarrow{NP}$|,則動(dòng)點(diǎn)P的軌跡方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.圓O1和圓O2的極坐標(biāo)方程分別為ρ=sinθ與ρ=cosθ.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過(guò)圓O1,圓O2兩個(gè)交點(diǎn)的直線的直角坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案