已知數(shù)列an+1=
1+an
1-an
(n∈N*),且a2=-3,則a2014=
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:數(shù)列an+1=
1+an
1-an
(n∈N*),且a2=-3,可得a3=-
1
2
,a4=
1
3
,a5=2,a6=-3.…,可得an+4=an.即可得出.
解答: 解:∵數(shù)列an+1=
1+an
1-an
(n∈N*),且a2=-3,
∴a3=
1-3
1+3
=-
1
2
,a4=
1-
1
2
1+
1
2
=
1
3
,a5=
1+
1
3
1-
1
3
=2,a6=
1+2
1-2
=-3.
…,
∴an+4=an
則a2014=a503×4+2=a2=-3.
故答案為:-3.
點評:本題考查了遞推數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線a,b,c,兩個平面α,β.則下列命題中:
①a∥c,c∥b⇒a∥b;
②a∥β,b∥β⇒a∥b;
③a∥c,c∥α⇒a∥α;
④a∥β,a∥α⇒α∥β;
⑤a?α,b∥α,a∥b⇒a∥α,
正確的命題是(  )
A、①⑤B、①②C、②④D、③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,長軸長為2
3
,直線l:y=kx+2交橢圓于不同的A,B兩點.
(1)求橢圓的方程;
(2)O是坐標原點,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A(2,-1),B(4,3),C(3,-2),求:
(1)BC邊上的高所在直線方程;
(2)AB邊中垂線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(2,3)作直線l分別與x軸的正半軸和y軸的正半軸交于A(a,0),B(0,b)兩點
(1)求|PA|+|PB|的最小值.
(2)當△AOB(O為原點)的面積S最小時,求直線l的方程,并求出S的最小值.
(3)當|PA|•|PB|取得最小值時,求直線?的方程.(提示:設(shè)∠OAB=θ,以θ為參變量求解,x+y-5=0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實數(shù)x,y滿足x+y+2=4xy,若對任意滿足條件的x,y都有(x+y)2+1-m(x+y)≥0恒成立,則實數(shù)m的取值范圍為( 。
A、(-∞,
5
2
]
B、[
5
2
,+∞)
C、(-∞,
3
2
]
D、[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若S3=12,S6=42,則a10+a11+a12=(  )
A、156B、102
C、66D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點關(guān)于一、三象限的角平分線軸對稱,z1=1+2i,則z1z2=(  )
A、4+5iB、4iC、5iD、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在常數(shù)a≠0,使得x取定義域內(nèi)的每一個值,都有f(x)=-f(2a-x),則稱f(x)為準奇函數(shù),下列函數(shù)中是準奇函數(shù)的是
 
(把所有滿足條件的序號都填上)
①f(x)=
x

②f(x)=x2
③f(x)=tanx
④f(x)=cos(x+1)

查看答案和解析>>

同步練習冊答案