8.下列五個(gè)函數(shù)①y=x${\;}^{\frac{5}{3}}$;②y=x${\;}^{\frac{3}{4}}$;③y=x${\;}^{\frac{1}{3}}$;④y=x${\;}^{\frac{2}{3}}$;⑤y=x-2中,定義域?yàn)镽的函數(shù)的個(gè)數(shù)是( 。
A.1B.2C.3D.4

分析 根據(jù)冪函數(shù)的定義與性質(zhì),對(duì)題目中的函數(shù)進(jìn)行分析、判斷即可.

解答 解:對(duì)于①,函數(shù)y=x${\;}^{\frac{5}{3}}$=$\root{3}{{x}^{5}}$,定義域?yàn)镽,滿足條件;
對(duì)于②,函數(shù)y=x${\;}^{\frac{3}{4}}$=$\root{4}{{x}^{3}}$,定義域?yàn)閇0,+∞),不滿足條件;
對(duì)于③,y=x${\;}^{\frac{1}{3}}$=$\root{3}{x}$,定義域?yàn)镽,滿足條件;
對(duì)于④,y=x${\;}^{\frac{2}{3}}$=$\root{3}{{x}^{2}}$,定義域?yàn)镽,滿足條件;
對(duì)于⑤,y=x-2=$\frac{1}{{x}^{2}}$,定義域?yàn)閧x|x≠0},不滿足條件.
綜上,以上函數(shù)定義域?yàn)镽的函數(shù)個(gè)數(shù)是3.
故選:C.

點(diǎn)評(píng) 本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.參數(shù)t為實(shí)數(shù),則復(fù)數(shù)z=t2+$\frac{i}{{t}^{2}}$對(duì)應(yīng)的點(diǎn)P的軌跡是xy=1(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在同一坐標(biāo)系中,函數(shù)y=3-x與y=3x的圖象之間的關(guān)系是( 。
A.關(guān)于原點(diǎn)對(duì)稱B.關(guān)于直線y=x對(duì)稱C.關(guān)于x軸對(duì)稱D.關(guān)于y軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算下列各式,寫(xiě)出計(jì)算過(guò)程
(Ⅰ)${27^{\frac{2}{3}}}+{16^{-\frac{1}{2}}}+{({\frac{1}{2}})^{-2}}-{({\frac{8}{27}})^{-\frac{2}{3}}}$
(Ⅱ)${2^{-\frac{1}{2}}}+\frac{{{{({-4})}^0}}}{{\sqrt{2}}}+\frac{1}{{\sqrt{2}-1}}-{8^{\frac{2}{3}}}+2{log_{36}}2+{log_{36}}9$
(Ⅲ)已知tanα=3,求$\frac{sinα+cosα}{sinα-2cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)某總體是由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第3列和第4列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)是11.
7816 6572 0802 6316 0702 4369 9728 1198
3204 9234 4935 8200 3623 4869 6938 7481.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在等差數(shù)列{an}中,若a4=1,a7=-5,則它的前10項(xiàng)和S10=-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a•\overrightarrow b=1$,若$\overrightarrow a-\overrightarrow c$與$\overrightarrow b-\overrightarrow c$的夾角為60°,則$|{\overrightarrow c}|$的最大值為$\sqrt{3}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若點(diǎn)P(x,y)為不等式組$\left\{\begin{array}{l}2x-y-2≥0\\ x+2y-1≥0\\ 3x+y-8≤0\end{array}\right.$所表示區(qū)域內(nèi)任一點(diǎn),則x2+y2+1的最小值為(  )
A.$-\frac{1}{3}$B.1C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(-1,2),且$\overrightarrow{a}$與$\overrightarrow{a}$+$λ\overrightarrow$的夾角為銳角,則實(shí)數(shù)λ的取值范圍是(-5,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案