19.設(shè)△ABC的三邊長(zhǎng)分別為a,b,c,面積為S,內(nèi)切圓半徑為r,則S=$\frac{1}{2}$(a+b+c)r,類比這個(gè)結(jié)論知:四面體S-ABC的四個(gè)面的面分別為S1,S2,S3,S4,體積為V,內(nèi)切球半徑為R,則V=$\frac{1}{3}({S_1}+{S_2}+{S_3}+{S_4})R$.

分析 根據(jù)平面與空間之間的類比推理,由點(diǎn)類比點(diǎn)或直線,由直線類比直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可

解答 解:設(shè)四面體的內(nèi)切球的球心為O,
則球心O到四個(gè)面的距離都是R,
所以四面體的體積等于以O(shè)為頂點(diǎn),
分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.
則四面體的體積為$\frac{1}{3}({S_1}+{S_2}+{S_3}+{S_4})R$.
故答案為:$\frac{1}{3}({S_1}+{S_2}+{S_3}+{S_4})R$.

點(diǎn)評(píng) 類比推理是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)類比遷移到另一類數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(或猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)(x∈R)滿足f(2)=4,且f(x)的導(dǎo)函數(shù)f′(x)>3,則f(x)<3x-2的解集為( 。
A.(-2,2)B.(-∞,2)C.(-∞,-2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.?dāng)?shù)列{an}的通項(xiàng)an=n(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$),其前n項(xiàng)和為Sn,則S30為( 。
A.15B.20C.25D.39

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,2an+1=2an+p(p為常數(shù),n∈N*).
(Ⅰ)若S3=6,求Sn
(Ⅱ)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若$f(n)=\frac{1}{2n+1}+\frac{1}{2n+2}+…+\frac{1}{3n}(n∈{N^*})$,則當(dāng)n≥3時(shí),f(n+1)-f(n)=$\frac{1}{3n+1}+\frac{1}{3n+2}+\frac{1}{3n+3}-\frac{1}{2n+1}-\frac{1}{2n+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)a、b是兩條直線,α、β是兩個(gè)平面,則下列命題中錯(cuò)誤的是( 。
A.若a⊥α,a⊥β,則α∥βB.若a⊥α,b⊥α,則a∥bC.若a?α,b⊥α,則a⊥bD.若a⊥α,α⊥β,則a∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若空間向量$\overrightarrow{a}$=(1,-1,0),$\overrightarrow$=(-1,2,1),$\overrightarrow{c}$=(2,1,m)共面,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.曲線y=lnx-2x在點(diǎn)(1,-2)處的切線與坐標(biāo)軸所圍成的三角形的面積是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)若以連續(xù)拋兩次骰子分別得到的點(diǎn)數(shù)m,n分別作為點(diǎn)P的橫坐標(biāo)和縱坐標(biāo),求點(diǎn)P落在圓x2+y2=16內(nèi)的概率;
(2)已知函數(shù)f(x)=ax2+bx-1,a,b∈[0,4],求f(1)>0且f(-1)<0成立的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案