8.曲線y=lnx-2x在點(diǎn)(1,-2)處的切線與坐標(biāo)軸所圍成的三角形的面積是( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.2

分析 根據(jù)求導(dǎo)公式求出函數(shù)的導(dǎo)數(shù),把x=1代入求出切線的斜率,代入點(diǎn)斜式方程并化簡,分別令x=0和y=0求出切線與坐標(biāo)軸的交點(diǎn)坐標(biāo),再代入面積公式求解.

解答 解:由題意得y′=$\frac{1}{x}$-2,則在點(diǎn)M(1,-2)處的切線斜率k=-1,
故切線方程為:y+2=-(x-1),即y=-x-1,
令x=0得,y=-1;令y=0得,x=-1,
∴切線與坐標(biāo)軸圍成三角形的面積S=$\frac{1}{2}×1×1$=$\frac{1}{2}$,
故選A.

點(diǎn)評 試題主要考查導(dǎo)數(shù)的幾何意義、切線的求法和三角形的面積公式,考查考生的計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義在R上的函數(shù)f(x)滿足:f(x)•f(x+2)=13,f(1)=2,則f(2015)=$\frac{13}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)△ABC的三邊長分別為a,b,c,面積為S,內(nèi)切圓半徑為r,則S=$\frac{1}{2}$(a+b+c)r,類比這個結(jié)論知:四面體S-ABC的四個面的面分別為S1,S2,S3,S4,體積為V,內(nèi)切球半徑為R,則V=$\frac{1}{3}({S_1}+{S_2}+{S_3}+{S_4})R$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知拋物線C:x2=2y的焦點(diǎn)為F,P為拋物線C上的任意一點(diǎn),點(diǎn)M(-2,3),則|MP|+|PF|的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是( 。
A.a2>b2是a>b的必要條件
B.“若a∈(0,1),則關(guān)于x的不等式ax2+2ax+1>0解集為R”的逆命題為真
C.“若a,b不都是偶數(shù),則a+b不是偶數(shù)”的否命題為假
D.“已知a,b∈R,若a+b≠3,則a≠2或b≠1”的逆否命題為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.集合$A=\left\{{x\left|{x=\frac{k}{4}+\frac{1}{2},k∈Z}\right.}\right\}$,與集合$B=\left\{{x\left|{x=\frac{k}{2}+\frac{1}{4},k∈Z}\right.}\right\}$的關(guān)系是B?A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,右準(zhǔn)線為l,若橢圓上存在點(diǎn)M,滿足它到點(diǎn)F的距離是其到l的距離的$\frac{3}{2}$倍,則橢圓的離心率的取值范圍為[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$y=\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$的最小值是$\frac{5}{2}$.設(shè)x、y∈R+且$\frac{1}{x}$+$\frac{9}{y}$=1,則x+y的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{bn}滿足:b${\;}_{1}=\frac{1}{2}$,bn+1=1-$\frac{1}{_{n}}$.
(1)求b2,b3,b4
(2)證明:bn+3=bn;
(3)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,求S2012的值.

查看答案和解析>>

同步練習(xí)冊答案