14.設(shè)向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(m,$\sqrt{3}$),且$\overrightarrow{a}$•$\overrightarrow$=2,則實(shí)數(shù)m=-1.

分析 由平面向量數(shù)量積坐標(biāo)運(yùn)算法則得到$\overrightarrow{a}•\overrightarrow$=m+3=2,由此能求出實(shí)數(shù)m.

解答 解:∵向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(m,$\sqrt{3}$),且$\overrightarrow{a}$•$\overrightarrow$=2,
∴$\overrightarrow{a}•\overrightarrow$=m+3=2,
解得實(shí)數(shù)m=-1.
故答案為:-1.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面向量數(shù)量積坐標(biāo)運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)的圖象如圖所示,f′(x)是f(x)的導(dǎo)函數(shù),則下列數(shù)值排序正確的是(  )
A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)正實(shí)數(shù)x,y滿足x+2y=xy,若m2+2m<x+2y恒成立,則實(shí)數(shù)m的取值范圍是(-4,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知$sin(α-\frac{3π}{2})<0,tanα<0$,則角α是第二象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)三角形的內(nèi)角A、B、C的對邊分別為a、b、c,且a=2bsinA.其中角B為銳角.
(1)求B的大。
(2)求cosA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.曲線y=2x-ex在x=0處的切線的傾斜角為( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將正整數(shù)排成下表:

則在表中數(shù)字2015出現(xiàn)在(  )
A.第44行第78列B.第45行第79列C.第44行第77列D.第45行第77列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x3+ax2+bx在x=-1與x=2處都取得極值.
(Ⅰ)求a,b的值及函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x∈[-2,3]時(shí),f(x)<m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(Ⅰ)已知α為第二象限的角,化簡:$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$.
(Ⅱ)計(jì)算$cos\frac{25π}{6}+cos\frac{25π}{3}+tan({-\frac{25π}{4}})+sin\frac{5π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案