分析 根據(jù)題意,把x+2y=xy化為$\frac{1}{y}$+$\frac{2}{x}$=1,利用基本不等式求出x+2y的最小值,再轉(zhuǎn)化不等式m2-2m<x+2y,求解關(guān)于m的不等式即可.
解答 解:正實(shí)數(shù)x,y滿足x+2y=xy,
∴$\frac{1}{y}$+$\frac{2}{x}$=1,
∴x+2y=(x+2y)($\frac{2}{x}$+$\frac{1}{y}$)=2+2+$\frac{4y}{x}$+$\frac{x}{y}$≥4+2$\sqrt{\frac{4y}{x}•\frac{x}{y}}$=8,
當(dāng)且僅當(dāng)x=2y,即x=4,y=2時(shí)等號(hào)成立.
不等式m2+2m<x+2y恒成立,
即m2+2m<8恒成立,
解得-4<m<2;
∴實(shí)數(shù)m的取值范圍是(-4,2).
故答案為:(-4,2).
點(diǎn)評(píng) 本題考查恒成立問題,考查了利用基本不等式求最值,關(guān)鍵是“1”的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4xf(x2)≤x4f(2x) | B. | e2xf($\frac{1}{x}$)≥$\frac{1}{{x}^{2}}$f(ex) | ||
C. | xf($\sqrt{x}$)≤f(x) | D. | 4xf(x+1)≤(x2+2x+1)f(2$\sqrt{x}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 20 | C. | 31 | D. | 43 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 50 | B. | 45 | C. | 36 | D. | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}+4ln2$ | B. | 4(1-ln2) | C. | 2(1-ln2) | D. | 4(2ln2-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 8 | D. | -8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com