雙曲線C:
x2
4
-y2=1的離心率是
 
;漸近線方程是
 
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的a,b,c,運用漸近線方程和離心率公式即可得到.
解答: 解:雙曲線C:
x2
4
-y2=1的a=2,b=1,
c=
4+1
=
5
,
則e=
c
a
=
5
2
,漸近線方程為y=±
1
2
x.
故答案為:
5
2
,y=±
1
2
x.
點評:本題考查雙曲線的方程和性質(zhì),考查漸近線方程和離心率的求法,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+(y-1)2=4的周長被雙曲線E:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線平分,則雙曲線E的離心率為(  )
A、
2
B、
3
C、
5
2
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=
3
3
x將圓(x-1)2=y2=1分割成的兩段圓弧長之比是(  )
A、1:1B、1:2
C、1:3D、1:4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P的直角坐標(biāo)為(2,2
3
),則點P的一個極坐標(biāo)為( 。
A、(4,
π
3
B、(4,
6
C、(4,-
π
6
D、(4,-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的等比數(shù)列{an}滿足:a2012=a2011+2a2010,若
aman
=2a1,則
1
m
+
5
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2011年,某海域發(fā)生了8.0級地震,某志愿者協(xié)會現(xiàn)派出2名女醫(yī)生和3名男醫(yī)生組成一個小組赴此海域救援,若從中任選2人前往地震中心救援.
(1)求所選2人中恰有一名男醫(yī)生的概率;
(2)求所選2人中至少有一名女醫(yī)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有如下命題:命題p:設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;命題q:“?x0∈R,x02-x0-1>0”的否定是“?x0∈R,x02-x0-1≤0”,則下列命題中為真命題的是( 。
A、p∧qB、p∧(¬q)
C、p∨qD、p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>2,則x+
1
x-2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足約束條件
x+y≤1
x-y≥-1
2x-y≤2
,則目標(biāo)函數(shù)z=3x+y的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案