1.已知中心均在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1、F2,這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2,則e1e2的取值范圍為( 。
A.$({\frac{1}{3},+∞})$B.$({\frac{2}{3},1})$C.(2,+∞)D.$({\frac{3}{2},+∞})$

分析 設(shè)橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),由條件可得m=10,n=2c,再由橢圓和雙曲線的定義可得a1=5+c,a2=5-c,(c<5),運(yùn)用三角形的三邊關(guān)系求得c的范圍,再由離心率公式,計(jì)算即可得到所求范圍.

解答 解:設(shè)橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),
由于△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由橢圓的定義可得m+n=2a1,
由雙曲線的定義可得m-n=2a2,
即有a1=5+c,a2=5-c,(c<5),
再由三角形的兩邊之和大于第三邊,可得2c+2c>10,
可得c>$\frac{5}{2}$,即有$\frac{5}{2}$<c<5.
由離心率公式可得e1•e2=$\frac{c}{{a}_{1}}•\frac{c}{{a}_{2}}$=$\frac{{c}^{2}}{25-{c}^{2}}$=$\frac{1}{\frac{25}{{c}^{2}}-1}$,
由于1<$\frac{25}{{c}^{2}}$<4,則有$\frac{1}{\frac{25}{{c}^{2}}-1}$>$\frac{1}{3}$.
則e1•e2 的取值范圍為($\frac{1}{3}$,+∞).
故選:A.

點(diǎn)評(píng) 本題考查橢圓和雙曲線的定義和性質(zhì),考查離心率的求法,考查三角形的三邊關(guān)系,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線l1:y=kx+1和直線l2:y=mx+m,則“k=m”是“l(fā)1∥l2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖是某算法的程序框圖,若程序運(yùn)行后輸出的結(jié)果是27,則判斷框①處應(yīng)填入的條件是( 。
A.n>2B.n>3C.n>4D.n>5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.當(dāng)a>0時(shí),函數(shù)f(x)=(x2+2ax)ex的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{1}{x-1}$-lnx,函數(shù)y=f(|x|)的零點(diǎn)個(gè)數(shù)為n,則2${\;}^{lo{g}_{n}2}$等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在(x2+$\frac{4}{x^2}$-4)5的展開式中含x4項(xiàng)的系數(shù)是-960.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程ρ=$\frac{1}{1-cosθ+sinθ}$表示的曲線是雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若正三棱柱的底面邊長(zhǎng)為2$\sqrt{3}$,高為2$\sqrt{5}$,則此正三棱柱的外接球的體積為36π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若曲線C1:x2+y2-2x=0與曲線C2:y(y-mx-m)=0有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案