2.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(m,1),如果向量$\overrightarrow a$與$\overrightarrow b$平行,則m的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

分析 利用向量共線列出方程,求出m即可.

解答 解:向量$\overrightarrow a=(-1,2),\overrightarrow b=(m,1)$,向量$\overrightarrow a$與$\overrightarrow b$平行,
可得2m=-1.
解得m=-$\frac{1}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查向量共線充要條件的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a為實(shí)參數(shù),試討論y=asin2x+2cosx-a-2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列命題正確的個(gè)數(shù)是(  )
(1)命題“若m>0,則方程x2+x-m=0有實(shí)根”的逆否命題為:“若方程x2+x-m=0無實(shí)根,則m≤0”
(2)對(duì)于命題p:“?x∈R使得x2+x+1<0”,則¬p:“?x∈R,均有x2+x+1≥0”
(3)“x=1”是“x2-3x+2=0”的充分不必要條件
(4)若p∧q為假命題,則p,q均為假命題.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),xf′(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等差數(shù)列{an}中,若a3和a9是方程x2-4x+3=0的兩根,則a6的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,$acosC+\sqrt{3}asinC-b-c=0$
(Ⅰ)求A;
(Ⅱ)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)點(diǎn)P(x,y)是曲線a|x|+b|y|=1(a≥0,b≥0)上任意一點(diǎn),其坐標(biāo)(x,y)均滿足$\sqrt{{x^2}+{y^2}+4x+4}+\sqrt{{x^2}+{y^2}-4x+4}≤8$,則$2a+\sqrt{3}b$的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若奇函數(shù)f(x)在區(qū)間[4,9]上是減函數(shù)且最小值為2,則f(x)在區(qū)間[-9,-4]上是( 。
A.增函數(shù)且最大值為-2B.增函數(shù)且最小值為-2
C.減函數(shù)且最小值為-2D.減函數(shù)且最大值為-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若關(guān)于x的不等式(ax-20)(lg2a-lgx)≤0對(duì)任意的x∈N+恒成立,則實(shí)數(shù)a的取值范圍是[3,$\frac{10}{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案