19.已知橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,F(xiàn)1,F(xiàn)2為橢圓的左右焦點(diǎn),P是橢圓在第一象限的點(diǎn),則|PF1|-|PF2|的取值范圍是( 。
A.(0,6)B.(1,6)C.(0,$\sqrt{5}$)D.(0,2)

分析 由已知橢圓方程求出焦距,畫(huà)出圖形,分析當(dāng)P在第一象限無(wú)限靠近y軸和當(dāng)P在第一象限無(wú)限靠近x軸時(shí)|PF1|-|PF2|的取值情況得答案.

解答 解:如圖,由橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,
得$c=\sqrt{{a}^{2}-^{2}}=1$,∴2c=2.

當(dāng)P在第一象限無(wú)限靠近y軸時(shí),|PF1|-|PF2|的值大于0且無(wú)限接近于0;
當(dāng)P在第一象限無(wú)限靠近x軸時(shí),|PF1|-|PF2|的值無(wú)限接近于2c=2.
∴|PF1|-|PF2|的取值范圍是(0,2).
故選:D.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查數(shù)形結(jié)合的解題思想方法,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)M(a,b)(ab≠0)是圓x2+y2=r2內(nèi)一點(diǎn),直線g是以M為中點(diǎn)的弦所在直線,直線l的方程為bx-ay+r2=0,則( 。
A.l⊥g,且l與圓相交B.l⊥g,且l與圓相離C.l∥g,且l與圓相交D.l∥g,且l與圓相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}的通項(xiàng)公式為${a_n}=3-\frac{n+3}{2^n}(n∈{N_+})$,數(shù)列{bn}的通項(xiàng)公式為${b_n}=\frac{5n}{2n+1}$(n∈N+
(1)分別令n=1,2,3,4,計(jì)算an,bn值,并比較a1與b1,a2與b2,a3與b3,a4與b4大小;
(2)根據(jù)(1)猜測(cè)an與bn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某種產(chǎn)品的以往各年的宣傳費(fèi)用支出x(萬(wàn)元)與銷售量t(萬(wàn)件)之間有如下對(duì)應(yīng)數(shù)據(jù)
   x   2   4   5   6   8
   t   4   3   6   7   8
(1)試求回歸直線方程;
(2)設(shè)該產(chǎn)品的單件售價(jià)與單件生產(chǎn)成本的差為y(元),若y與銷售量t(萬(wàn)件)的函數(shù)關(guān)系是$y=-\frac{1}{32000}{t}^{2}-\frac{1}{t}+\frac{103}{80}$(0<t<30),試估計(jì)宣傳費(fèi)用支出x為多少萬(wàn)元時(shí),銷售該產(chǎn)品的利潤(rùn)最大?(注:銷售利潤(rùn)=銷售額-生產(chǎn)成本-宣傳費(fèi)用)
(參考數(shù)據(jù)與公式:$\sum_{i=1}^{5}{{x}_{i}}^{2}=145$,$\sum_{i=1}^{5}{x}_{i}{t}_{i}$=156,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知集合A={x|1≤x≤3},$B=\left\{{\left.{x\left|\right.\sqrt{x-1}≥1}\right\}}\right.$.
(1)求A∩B;
(2)若A∩B是集合{x|x≥a}的子集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為兩個(gè)不共線的向量,$\overrightarrow{a}$=-$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow$=4$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-3$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$,試用$\overrightarrow$,$\overrightarrow{c}$為基底表示向量$\overrightarrow{a}$;
(2)已知向量$\overrightarrow{m}$=(3,2),$\overrightarrow{n}$=(-1,2),$\overrightarrow{p}$=(4,1),當(dāng)k為何值時(shí),($\overrightarrow{m}$+k$\overrightarrow{p}$)∥(2$\overrightarrow{n}$-$\overrightarrow{m}$)?平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\sqrt{3}$sinx+cosx,將f(x)圖象上所有點(diǎn)的橫坐標(biāo)都變化到原來(lái)的2倍(縱坐標(biāo)不變)得到函數(shù)g(x)的圖象,那么g(x)的周期是4π,值域是[-2,2],含原點(diǎn)的遞增區(qū)間是[$-\frac{4π}{3}$,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.《九章算術(shù)》“竹九節(jié)”問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則該竹子最上面一節(jié)的容積的升數(shù)為(  )
A.$\frac{13}{22}$B.$\frac{37}{33}$C.$\frac{47}{44}$D.$\frac{67}{66}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{5}$,則其漸近線方程為( 。
A.$y=±\frac{1}{2}x$B.y=±2xC.$y=±\frac{{\sqrt{6}}}{6}x$D.$y=±\sqrt{6}x$

查看答案和解析>>

同步練習(xí)冊(cè)答案