分析 (1)利用函數(shù)的最高點(diǎn)求出A,求出函數(shù)的周期,即可求ω,利用最高點(diǎn)結(jié)合φ的范圍求出它的值;
(2)利用兩角和的正弦函數(shù)公式化簡(jiǎn)可得解析式f(x)=2sin(2x+$\frac{π}{3}$),由$x∈(0,\frac{π}{2})$,可得:2x+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),從而解得f(x)∈(-$\sqrt{3}$,2].
解答 (本小題滿分10分)
解:(1)由題意最高點(diǎn)D(2,$\sqrt{2}$)可得:A=$\sqrt{2}$.
由題意$\frac{T}{4}$=6-2=4,T=16,T=$\frac{2π}{ω}$,∴ω=$\frac{π}{8}$.
∴f(x)=$\sqrt{2}$sin($\frac{π}{8}$+φ),
∵函數(shù)圖象過最高點(diǎn)D(2,$\sqrt{2}$),
∴$\frac{π}{8}$×2+φ=2kπ+$\frac{π}{2}$,可得:φ=2kπ+$\frac{π}{4}$,k∈Z,結(jié)合范圍:|φ|<π,可解得:φ=$\frac{π}{4}$.
綜上,A=$\sqrt{2}$,ω=$\frac{π}{8}$,φ=$\frac{π}{4}$.
(2)∵f(x)=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
∵$x∈(0,\frac{π}{2})$,∴可得:2x+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
∴sin(2x+$\frac{π}{3}$)∈(-$\frac{\sqrt{3}}{2}$,1],
∴解得:f(x)=2sin(2x+$\frac{π}{3}$)∈(-$\sqrt{3}$,2].
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,y=Asin(ωx+φ)中參數(shù)的物理意義,正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k≤-$\sqrt{3}$或k≥1 | B. | k≥1 | C. | k≤-$\sqrt{3}$或k$≥\sqrt{3}$ | D. | k≥$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (90,110] | B. | (95,125] | C. | (100,120] | D. | (105,115] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 240種 | B. | 188種 | C. | 204種 | D. | 96種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P1+P2 | B. | P1P2 | C. | 1-P1P2 | D. | 1-(1-P1)(1-P2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com