分析 (1)由題意,3-4x+x2>0從而解出M={x|x>3或x<1},根據(jù)函數(shù)的單調(diào)性求出f(x)的單調(diào)區(qū)間和值域即可;
(2)令h(x)=1og2(3-x)-1og2(1+x),求出h(x)的定義域,從而求出h(x)的值域,得到b的范圍即可.
解答 解:由題意,3-4x+x2>0,
解得,x>3或x<1,
即M={x|x>3或x<1},
(1)令g(x)=x2-4x+3,(x>3或x<1),對稱軸x=2,
∴g(x)在(-∞,1)遞減,在(3,+∞)遞增,
根據(jù)復(fù)合函數(shù)同增異減的原則,
f(x)在(-∞,1)遞減,在(3,+∞)遞增,
x→∞時,f(x)→+∞,
∴f(x)的值域是R;
(2)令h(x)=1og2(3-x)-1og2(1+x),
由$\left\{\begin{array}{l}{3-x>0}\\{1+x>0}\\{x>3或x<1}\end{array}\right.$,解得:-1<x<1,
∴h(x)=${log}_{2}^{\frac{3-x}{1+x}}$,(-1<x<1),
令z=$\frac{3-x}{1+x}$=-1+$\frac{4}{x+1}$,
∴z∈(1,+∞),
∴h(x)>${log}_{2}^{z}$>${log}_{2}^{1}$=0,
∴b>0.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查函數(shù)的定義域、值域問題,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f′(3)<f′(4)<f(4)-f(3)<0 | B. | f′(3)<f(4)-f(3)<f′(4)<0 | C. | f′(4)<f(4)-f(3)<f′(3)<0 | D. | f(4)-f(3)<f′(4)<f′(3)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9π}{2}$ | B. | $\frac{27π}{8}$ | C. | 36π | D. | 8π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com