10.復(fù)數(shù)$\frac{(1-i)^{2}}{i}$的值是-2.

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡計算得答案.

解答 解:∵$\frac{(1-i)^{2}}{i}$=$\frac{-i(1-i)^{2}}{-{i}^{2}}=-i•(-2i)=-2$,
∴復(fù)數(shù)$\frac{(1-i)^{2}}{i}$的值是:-2.
故答案為:-2.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}$(θ為參數(shù)),P是曲線C上的動點(diǎn),Q(4,0)為x軸的定點(diǎn),M是PQ的中點(diǎn).
(1)求點(diǎn)M的軌跡的參數(shù)方程,并把它轉(zhuǎn)化為普通方程;
(2)設(shè)x=2+$\sqrt{t}$,t為參數(shù),求其對應(yīng)的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)為定義在R上的偶函數(shù),其導(dǎo)函數(shù)為f′(x),對任意實(shí)數(shù)x滿足xf′(x)>-f(-x),則不等式xf(x)<(1-2x)f(1-2x)的解集是( 。
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,+∞)C.(-∞,$\frac{1}{3}$)D.(-∞,$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知不等式$\frac{a}{x-2}$>1-a
(1)若a=x,求關(guān)于x不等式的解集;   
(2)若a≠1,求關(guān)于x不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,θ∈[0,2π).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)在曲線C上求一點(diǎn)D,使它到直線l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t為參數(shù),t∈R)的距離最短,并求出點(diǎn)D的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在x=0處的導(dǎo)數(shù)不等于零的是( 。
A.y=x3+x2B.y=x+e-xC.y=(x-1)e2D.y=xsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若Cn3=Cn5,則n=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某校教學(xué)大樓共有5層,每層均有2個樓梯,則由一樓至五樓的不同走法共有(  )
A.24B.52C.10種D.7種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.有如下四個命題:
①若a⊥α,b⊥α,則a∥b;
 ②空間中,若a⊥b,a⊥c,則b∥c;
③若a⊥α,b⊥a,則b∥a;
④若a⊥α,b∥a,b?β,則α⊥β,
其中為正確命題的是( 。
A.①②B.①④C.②③D.③④

查看答案和解析>>

同步練習(xí)冊答案