14.設(shè)全集為R,集合A={x|1≤3x<9},B={x|log2x≥0}
(Ⅰ)求A∩B
(Ⅱ)若集合C={x|x+a>0},滿足B∩C=B,求實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)利用指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì),分別化簡A,B,再計(jì)算A∩B
(Ⅱ)若集合C={x|x+a>0},滿足B∩C=B,利用B⊆C,即可求實(shí)數(shù)a的取值范圍.

解答 解:(Ⅰ)A={x|1≤3x<9}={x|0≤x<2};B={x|x≥1}.
∴A∩B={x|1≤x<2};
(Ⅱ)C={x|x>-a}.
∵B∩C=B,
∴B⊆C,
∴-a<1,
∴a>-1.

點(diǎn)評 本題考查集合的描述法表示,集合的基本運(yùn)算.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足a+b=2$\sqrt{2}$,C=$\frac{π}{3}$,sinA+sinB=$\sqrt{2}$sinC,則△ABC的面積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.集合A={1,2,4},B={x|x2∈A},將集合A、B分別用如圖中的兩個(gè)圓表示,則圓中陰影部分表示的集合中元素個(gè)數(shù)恰好為4的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列|an|滿足a1=1,$\sqrt{n}{a}_{n+1}$=$\sqrt{n+1}$an,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式:
(2)設(shè)bn=$\frac{1}{{a}_{n}+{a}_{n+1}}$,n∈N*,數(shù)列|bn|的前n項(xiàng)和為Sn.求證:Sn<$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)用“五點(diǎn)法”畫函數(shù)y=4sinx在區(qū)間[0,2π]上的簡圖;
(2)y=4sinx是周期函數(shù),周期T=2π,根據(jù)周期函數(shù)性質(zhì)和在區(qū)間[0,2π]上的圖象,畫出在區(qū)間[-2π,4π]上的圖象;(3)在區(qū)間[-2π,4π]上,寫出使得y≥0成立的x取值范圍,并說明每兩個(gè)相鄰區(qū)間端點(diǎn)與周期T之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$\sqrt{3}$acosC+($\sqrt{3}$c-2b)cosA=0,且cosA•cosC=$\frac{\sqrt{3}}{4}$,則△ABC是( 。
A.直角三角形B.等腰三角形
C.等邊三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知兩直線l1:mx+8y+n=0和l2:2x+my-1=0.則下列條件中一定能使得l1∥l2成立的是( 。
A.m=4B.m=0C.m=4或m=-4D.m=4且n≠-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{CA}$,$\overrightarrow{CB}$,滿足|$\overrightarrow{CA}$|=1,∠ACB=$\frac{π}{2}$,若關(guān)于實(shí)數(shù)x的函數(shù)f(x)=|x$\overrightarrow{CA}$+2$\overrightarrow{CB}$|-|$\overrightarrow{CB}$$+\overrightarrow{CA}$|,有唯一的零點(diǎn),已M為AB的中點(diǎn),則$\overrightarrow{MA}$$•\overrightarrow{MB}$=(  )
A.-$\frac{1}{3}$B.-$\frac{1}{4}$C.-$\frac{4}{9}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,A,B,C的對邊分別是a,b,c,3sin2C+8sin2A=11sinA•sinC,且c<2a.
(1)求證:△ABC為等腰三角形
(2)若△ABC的面積為8$\sqrt{15}$.且sinB=$\frac{\sqrt{15}}{4}$,求BC邊上的中線長.

查看答案和解析>>

同步練習(xí)冊答案