16.如圖所示的程序框圖,輸出結(jié)果中s=( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{5}{6}$

分析 根據(jù)框圖的流程依次計(jì)算程序運(yùn)行的結(jié)果,直到滿足條件K>4,計(jì)算輸出S的值即可得解.

解答 解:模擬執(zhí)行程序,可得
S=0,K=1
不滿足條件K>4,S=$\frac{1}{1×3}$,K=3
不滿足條件K>4,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$,K=5
滿足條件K>4,退出循環(huán),輸出S=$\frac{1}{1×3}$+$\frac{1}{3×5}$=$\frac{1}{2}$(1-$\frac{1}{3}+\frac{1}{3}-\frac{1}{5}$)=$\frac{2}{5}$.
故選:B.

點(diǎn)評(píng) 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程依次計(jì)算程序運(yùn)行的結(jié)果是解答此類問題的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.把下列各弧度化成度:
(1)-$\frac{7}{6}$π;
(2)-$\frac{10}{3}$π;
(3)1.4;
(4)$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的偶函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對(duì)任意的實(shí)數(shù)x,都有2f(x)+xf′(x)<2恒成立,則使x2f(x)-f(1)<x2-1成立的實(shí)數(shù)x的取值范圍為( 。
A.{x|x≠±1}B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若直角坐標(biāo)平面內(nèi)兩點(diǎn)P,Q滿足條件:①P、Q都在函數(shù)y=f(x)的圖象上;②P、Q關(guān)于原點(diǎn)對(duì)稱,則對(duì)稱點(diǎn)(P,Q)是函數(shù)y=f(x)的一個(gè)“伙伴點(diǎn)組”(點(diǎn)對(duì)(P,Q)與(Q,P)看作同一個(gè)“伙伴點(diǎn)組”).則下列函數(shù)中,恰有兩個(gè)“伙伴點(diǎn)組”的函數(shù)是②③(填空寫所有正確選項(xiàng)的序號(hào))
①y=$\left\{\begin{array}{l}{{x}^{3},x>0}\\{-x-1,x<0}\end{array}\right.$;②y=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x>0}\\{-ln|x|,x<0}\end{array}\right.$;③y=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{-{x}^{2}-4x,x<0}\end{array}\right.$;④y=$\left\{\begin{array}{l}{3x+\frac{1}{2},x>0}\\{{e}^{-x},x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=eax+1的圖象在點(diǎn)(1,f(1))處的切線斜率為a,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.甲乙兩人約定9:00到10:00間在某處會(huì)面,并約定先到者應(yīng)等候另一人一刻鐘,這時(shí)即可離去,則兩人能會(huì)面的概率為$\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在區(qū)間[0,3]上隨機(jī)取一個(gè)數(shù)x,則事件“-1≤log${\;}_{\frac{1}{3}}$(x+$\frac{1}{2}$)≤1”發(fā)生的概率為( 。
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{{t•{3^x}-1}}{{{3^x}+1}}({t∈R})$是奇函數(shù).
(1)求t的值;
(2)求f(x)的反函數(shù)f-1(x);
(3)對(duì)于任意的0<m<2,解不等式:${f^{-1}}(x)>{log_3}\frac{1+x}{m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={-1,0,1,},B={x|(x-1)2<1},則A∩B=(  )
A.{-1,0,1}B.{0}C.{1}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案