已知等比數(shù)列{an}中,a1+a2=9,a1a2a3=27,則{an}的前n項(xiàng)和Sn=
 
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用等比數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公比,由此能求出{an}的前n項(xiàng)和.
解答: 解:∵等比數(shù)列{an}中,a1+a2=9,a1a2a3=27,
a1+a1q=9
(a1q)3=27
,解得a1=6,q=
1
2
,
∴{an}的前n項(xiàng)和Sn=
6(1-
1
2n
)
1-
1
2
=12[1-(
1
2
n].
故答案為:12[1-(
1
2
n].
點(diǎn)評(píng):本題考查等比數(shù)列的前n項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=
1
2
,且(n+2)an+1=nan,則它的前20項(xiàng)之和S20=( 。
A、
18
19
B、
19
20
C、
20
21
D、
21
22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an},滿(mǎn)足a1=1,an+12-an2=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
1
an2an+12
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,且A+C=
3
,b=1.
(1)記角A=x,f(x)=a+c,若△ABC是銳角三角形,求f (x)的取值范圍;
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示:
(1)求函數(shù)f(x)的解析式;
(2)若g(x)的圖象是將f(x)的圖象向右平移1個(gè)單位得到的,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn,若a1+1,a3,a6成等比數(shù)列,則Sn=(  )
A、n(n+1)
B、n2
C、n(n-1)
D、2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:x>y>0,m>n>0求證:
x
n
y
m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在二項(xiàng)式(
1
x
-x210展開(kāi)式中含x10項(xiàng)是第
 
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若偶函數(shù)f(x)在(-∞,0]上是增函數(shù),則下列關(guān)系式中成立的是( 。
A、f(-
3
2
)<f(-1)<f(2)
B、f(2)<f(-1)<f(-
3
2
C、f(2)<f(-
3
2
)<f(-1)
D、f(-1)<f(-
3
2
)<f(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案