10.如圖所示,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=BC=2CD=2,AD=$\sqrt{3}$,PE=2BE.
(1)求證:平面PAD⊥平面PCD;
(2)若二面角P-AC-E的大小為45°,求直線PA與平面EAC所成角的正弦值.

分析 (1)推導(dǎo)出PC⊥AD,從而AD⊥平面PCD,由此能證明平面PAD⊥平面PCD.
(Ⅱ)取AB的中點F,以C為坐標(biāo)原點,CF為x軸,CD為y軸,CP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線PA與平面EAC所成角的正弦值.

解答 證明:(1)∵PC⊥平面ABC,AD?平面ABCD,
∴PC⊥AD,
又CD⊥AD,∴AD⊥平面PCD,
又AD?平面PAD,
∴平面PAD⊥平面PCD.
解:(Ⅱ)取AB的中點F,連結(jié)CF,則CF⊥AB,
如圖,以C為坐標(biāo)原點,CF為x軸,CD為y軸,CP為z軸,建立空間直角坐標(biāo)系,
則P(0,0,a),(a>0),E($\frac{2\sqrt{3}}{3}$,-$\frac{2}{3}$,$\frac{a}{3}$),
$\overrightarrow{CA}$=($\sqrt{3},1,0$),$\overrightarrow{CP}$=(0,0,a),$\overrightarrow{CE}$=($\frac{2\sqrt{3}}{3}$,-$\frac{2}{3}$,$\frac{a}{3}$),
設(shè)$\overrightarrow{m}$=(x,y,z)是平面PAC的一個法向量,
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CA}=\sqrt{3}x+y=0}\\{\overrightarrow{m}•\overrightarrow{CP}=az=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,-$\sqrt{3}$,0),
設(shè)平面EAC的法向量$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=\sqrt{3}a+b=0}\\{\overrightarrow{n}•\overrightarrow{CE}=\frac{2\sqrt{3}}{3}a-\frac{2}{3}b+\frac{a}{3}z=0}\end{array}\right.$,取a=1,得$\overrightarrow{n}$=(1,-$\sqrt{3}$,-$\frac{4\sqrt{3}}{a}$),
∵二面角P-AC-E的大小為45°,
∴cos45°=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{2\sqrt{4+\frac{48}{{a}^{2}}}}$=$\frac{\sqrt{2}}{2}$,
解得a=2$\sqrt{3}$,此時$\overrightarrow{n}$=(1,-$\sqrt{3}$,-2),
∴$\overrightarrow{PA}$=($\sqrt{3},1,-2\sqrt{3}$),
設(shè)直線PA與平面EAC所成角為θ,
則sinθ=|cos<$\overrightarrow{PA},\overrightarrow{n}$>|=$\frac{|\overrightarrow{PA}•\overrightarrow{n}|}{|\overrightarrow{PA}|•|\overrightarrow{n}|}$=$\frac{4\sqrt{3}}{4•\sqrt{8}}$=$\frac{\sqrt{6}}{4}$.
∴直線PA與平面EAC所成角的正弦值為$\frac{\sqrt{6}}{4}$.

點評 本題考查面面垂直的證明,考查線面角的正弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若y=|x|,則u=$\frac{y+1}{x+2}$的取值范圍為u≥$\frac{1}{2}$或u<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,∠A=60°,∠B=45°,a=3,則b=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線x2-my2=1的一個焦點是($\sqrt{5}$,0),則其漸近線方程為y=±2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)關(guān)于x的不等式(x+2)(a-x)≥0(a∈R)的解集為M,不等式x2-2x-3≤0的解集為N,且M∩N=[-1,2]
(1)求實數(shù)a的值;
(2)若在集合M∪N中任取一個實數(shù)x,求“x∈M∩N”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知(x2-3x+1)5=a0+a1x+a2x2+…+a10x10,則a1+a2+a3+…+a10=(  )
A.-1B.1C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.?dāng)?shù)列{an}的前n項和Sn滿足Sn=n2an且a1=2,則( 。
A.an=$\frac{4}{n(n+1)}$B.an=$\frac{2}{n+1}$C.an=$\frac{4}{n+1}$D.an=$\frac{2}{{n}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列不等式中,解集為實數(shù)集R的是( 。
A.x2+4x+4>0B.|x|>0C.x2-x+1≥0D.$\frac{1}{x}$-1<$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲y=-cosx (0≤x≤$\frac{3π}{2}$)與坐標(biāo)軸所圍圖形的面積是(  )
A.2B.$\frac{5}{2}$C.3D.π

查看答案和解析>>

同步練習(xí)冊答案