2.?dāng)?shù)列{an}的前n項(xiàng)和Sn滿足Sn=n2an且a1=2,則( 。
A.an=$\frac{4}{n(n+1)}$B.an=$\frac{2}{n+1}$C.an=$\frac{4}{n+1}$D.an=$\frac{2}{{n}^{2}}$

分析 由題意和當(dāng)n≥2時(shí)an=Sn-Sn-1化簡(jiǎn)已知的等式,得到數(shù)列的遞推公式,利用累積法求出an

解答 解:由題意得,Sn=n2an,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2an-[(n-1)2an-1],
化簡(jiǎn)得,$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n-1}{n+1}$,
則$\frac{{a}_{2}}{{a}_{1}}=\frac{1}{3}$,$\frac{{a}_{3}}{{a}_{2}}=\frac{2}{4}$,$\frac{{a}_{4}}{{a}_{3}}=\frac{3}{5}$,…,$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n-1}{n+1}$
以上n-1個(gè)式子相乘得,$\frac{{a}_{n}}{{a}_{1}}=\frac{1×2}{n(n+1)}$=$\frac{2}{n(n+1)}$,
又a1=2,則an=$\frac{4}{n(n+1)}$,
故選:A.

點(diǎn)評(píng) 本題考查了數(shù)列遞推公式的化簡(jiǎn),當(dāng)n≥2時(shí)an=Sn-Sn-1,以及累積法求出數(shù)列的通項(xiàng)公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2}+2x,x>a}\end{array}\right.$,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)十b有兩個(gè)零點(diǎn),則a的取值范圍是(  )
A.(-∞,-1)∪(-1,0)∪(2,+∞)B.(-∞,-2)∪(-1,0)∪(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2,n•an+1=Sn+n2+n,n∈N*
(1)求證:{$\frac{{S}_{n}}{n}$}是等差數(shù)列;
(2)求數(shù)列{2n-1•an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=BC=2CD=2,AD=$\sqrt{3}$,PE=2BE.
(1)求證:平面PAD⊥平面PCD;
(2)若二面角P-AC-E的大小為45°,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某公司進(jìn)行公開(kāi)招聘,應(yīng)聘者從10個(gè)考題中通過(guò)抽簽隨機(jī)抽取3個(gè)題目作答,規(guī)定至少答對(duì)2道者才有機(jī)會(huì)進(jìn)入“面試”環(huán)節(jié),小王只會(huì)其中的6道.
(1)求小王能進(jìn)入“面試”環(huán)節(jié)的概率;
(2)求抽到小王作答的題目數(shù)量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)是定義在[-3,3]上的偶函數(shù),且在區(qū)間[-3,0]上是單調(diào)增函數(shù),若f(1-2m)<f(m),則實(shí)數(shù)m的取值范圍是$[-1,\frac{1}{3})∪(1,2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某班有56名學(xué)生,現(xiàn)有56張獎(jiǎng)票,其中55張無(wú)獎(jiǎng),1張有獎(jiǎng),全班學(xué)生按照學(xué)號(hào)依次抽取,則第一個(gè)抽獎(jiǎng)的學(xué)生甲和最后一個(gè)抽獎(jiǎng)的學(xué)生乙中獎(jiǎng)的概率關(guān)系是( 。
A.P=PB.P<PC.P>PD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿足a1a2…an=n+1,則a3=$\frac{4}{3}$;若數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{(n+1)^{2}}$,Sn為數(shù)列{bn}的前n項(xiàng)和,則Sn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.?dāng)?shù)列{an}滿足an=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}<\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}≤{a}_{n}<1}\end{array}\right.$,若a1=$\frac{3}{5}$,則a2016=( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案