分析 根據(jù)函數(shù)的解析式,列出使函數(shù)解析式有意義的不等式(組),求出解集即可.
解答 解:(1)y=3${\;}^{\frac{1}{2x+1}}$,由2x+1≠0,解得x≠-$\frac{1}{2}$,∴其定義域?yàn)閧x|x≠-$\frac{1}{2}$};
(2)y=$\sqrt{1-(\frac{2}{3})^{x}}$,由1-($\frac{2}{3}$)x≥0,即($\frac{2}{3}$)x≤1=($\frac{2}{3}$)0,∴x≥0,∴其定義域?yàn)閇0,+∞);
(3)y=$\frac{1}{\sqrt{{a}^{x}-2}}$(a>0,a≠1),由ax-2>0得到ax>2,當(dāng)a>1時(shí),即x>loga2,∴其定義域?yàn)椋╨oga2,+∞);
當(dāng)0<a<1時(shí),即x<loga2,∴其定義域?yàn)椋?∞,loga2);
(4)y=log2$\frac{1}{3x-2}$;由$\frac{1}{3x-2}$>0,解得x>$\frac{2}{3}$,∴其定義域?yàn)椋?\frac{2}{3}$,+∞);
(5)y=$\sqrt{2lo{g}_{2}x-5}$;由2log2x-5≥0,解得x≥4$\sqrt{2}$,∴其定義域?yàn)閇4$\sqrt{2}$,+∞);
(6)y=log2$\frac{1}{1-{3}^{x}}$.由$\frac{1}{1-{3}^{x}}$>0,即3x<1,解得x<0,∴其定義域?yàn)椋?∞,0).
點(diǎn)評 本題考查了求定義域的問題,解題時(shí)應(yīng)使函數(shù)的解析式有意義,從而求出自變量的取值范圍,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-2)<f(3) | B. | f(-2)>f(3) | C. | f(-2)=f(-3) | D. | f(-1)≠f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com